
CHAPTER 11

MORE ADVANCED CLASSES

In this chapter, we shall explore the nature of C# classes more thoroughly. A key idea in
object-oriented programming is that you can use the same classes in several applications.
One such general-purpose class is a class named Date that will be introduced in this chap-
ter, together with several programs that exploit the Date class. When people develop soft-
ware systems that involve the use of classes, it is helpful if the class designs are described
with graphical-textual drawings. This chapter introduces some basics of a systematic
graphical-textual drawing method called the Unified Modeling Language (UML).

The last part of this chapter introduces properties and indexers which are class members
that resemble methods in that they contain executable action statements. Properties are
used to safely access data that is encapsulated inside objects. Indexers can make objects
behave like arrays.

These are sample pages from Kari Laitinen’s book
"A Natural Introduction to Computer Programming with C#".
For more information, please visit
http://www.naturalprogramming.com/csbook.html

336 Chapter 11: More advanced classes

11.1 Class Date – an example of a larger class

One advantage of object-oriented programming is that the same classes can be used over
and over again in many application programs. The C# programming environment, the
.NET Framework, provides ready-to-use classes which you can exploit in your own pro-
grams. It is also important that you learn yourself to design general-purpose classes, and to
use them in your programs. For this reason, we will study a general-purpose class named
Date in this section, and you will be shown several programs that exploit the Date class.
It is most important that you learn how class Date works. You do not necessarily have to
understand every program line of the class, but it is important that you understand how an
application program can create Date objects, and how the methods of the class work.

You have probably already guessed that class Date has something to do with pre-
senting information about dates. To calculate time information in days, months, and years
is not always such a simple thing to do. Some months have 31 days while others have only
30 days. Then there is the month of February which has only 28 days, except that once in
every four years there is a leap year when February has 29 days. Then there is an excep-
tion that, although normally years equally divisible by four (e.g. 1992 and 1996) are leap
years, years that are full centuries (e.g. 1800 and 1900) are not leap years. Then there is an
exception to this exception that full centuries that are equally divisible by four (e.g. 1600,
2000, and 2400) are leap years. These are only some examples of the complexities of time
calculation. Most of the complexities related to calculations of time as dates are incorpo-
rated in the methods of class Date. So this class should be useful when we need to handle
date information in our programs.

The reasons why calculating with dates is complex are partly physical, partly histori-
cal. The historical reasons include the structure of our calendar and things such as how
date information can be written down. In different countries people write dates in different
ways. For example, in the United States, dates are written so that 10/18/2001 means the
18th day of October in year 2001. In Europe, it is common to write this date as
18.10.2001. Probably both of these styles to write dates are equally good, but the problem
is that there is no single standard way. Class Date supports both of these date formats, and
it can be made to support other formats if necessary.

The physical reasons why calculating with dates is difficult result from some astro-
nomical facts. For example, a year is defined as the time during which the Earth goes
around the Sun once. That is close to 365 and 1/4 days. A month approximates the time
that the Moon uses to rotate the Earth once. Our programs for time calculation must be
written so that they respect these and other astronomical facts.

Class Date solves many of the everyday problems related to calculations with date
information. Three short programs demonstrate how class Date can be used in application
programs. Program Columbus.cs shows how chronological distances between two Date
objects can be calculated. Program Birthdays.cs shows how to easily find out what day of
the week is a once-yearly date, such as a birthday. With program Friday13.cs you can help
your superstitious friends. Program Friday13.cs prints a list of dates that are Fridays and
the 13th day of a month. The class Date itself, which is exploited in all these example pro-
grams, is shown and explained as program Date.cs.

Class Date has three fields that are simple int variables to hold the day, month, and
year of a Date object. The fourth field is date_print_format which gets either value
'A' or 'E', depending on whether a Date object ought to be printed in the American way
MM/DD/YYYY or in the European way DD.MM.YYYY. Class Date has four construc-
tor methods. Date objects can be created in different ways. For example, Date objects for
the date 16th of August in year 2004 can be created in the following ways:

Date first_american_date = new Date(16, 8, 2004, 'A') ;
Date first_european_date = new Date(16, 8, 2004, 'E') ;
Date second_american_date = new Date("08/16/2004") ;
Date second_european_date = new Date("16.08.2004") ;

11.1 Class Date – an example of a larger class 337

The last two ways to create Date objects are the easiest to use in practice. Both of
these Date object creations invoke the same constructor method. The constructor exam-
ines the initialization date given as a string, and checks whether '/' or '.' is used to separate
the numbers in the string. When '/' is used to separate numbers, the Date object becomes
an American date, and it will later be printed in the American format. Objects initialized in
the European way will later be printed in the European date format.

Class Date has almost twenty public methods. Four of these methods are short
accessor methods which simply read the fields. For example, the method

public int day() { return this_day ; }

reads the protected field this_day and returns it to the caller. Methods like day() are
commonly used in object-oriented programming, since, according to the principles of
object-orientedness, data stored in objects should be protected from the outside world, and
accessed only through methods. Methods that either read or write data fields can be
labeled with the term "accessor method". Method day() is then a read accessor method as
it allows a protected data field to be read. (Instead of accessor methods, it is possible to use
so-called properties in C# classes. Properties will be discussed later in this chapter.)

The longer methods of class Date make various calculations related to time in days.
The following list describes these methods:

• The boolean method is_last_day_of_month() returns true or false. This
method is necessary because the months of a year have different lengths, and dur-
ing leap years February has an extra day.

• The boolean method this_is_a_leap_year() contains the rules that specify
whether a year is a leap year or not.

• Method is_within_dates() takes two Date objects as parameters. It returns
true if the date for which the method was invoked is equal to or between the dates
given as parameters.

• Method index_for_day_of_week() returns an integer in the range from 0 to 6.
0 means that the Date object is Monday, 6 meaning Sunday.

• Method get_day_of_week() calls method index_for_day_of_week() and
returns a string object containing either "Monday", "Tuesday", ..., or "Sunday".

• The methods increment() and decrement() are used to rotate the dates stored
in Date objects. These methods take care of leap years and varying lengths of
months, so that Date objects are incremented and decremented correctly. These
methods are called by several other methods of class Date.

• Method get_distance_to() calculates a chronological distance between two
Date objects. get_distance_to() calculates the distance in whole years,
months, and days.

• Method get_week_number() returns an integer that denotes the week of the year.
Every Date object belongs to some week in the range from 1 to 53. Every year has
at least 52 weeks. About every sixth year there is a year that has 53 weeks. The rea-
son for this is that 52 weeks make only 364 days but years are either 365 or 366
days long. Week 53 is a kind of leap week that is used to consume the extra days
that do not fit with the normal 52 weeks. Week numbers are commonly used in the
calendars of many countries.

• Methods is_equal_to(), is_not_equal_to(), is_earlier_than(), and
is_later_than() are methods of type bool that return true or false depend-
ing on what is the chronological relation between two Date objects.

• Method ToString() converts a Date object to a string object and returns it to
the caller. When a class has a method with name ToString(), that method is in-
voked automatically in situations when objects of the class in question are joined to

338 Chapter 11: More advanced classes

string objects with the string concatenation operator +. Note that the name of this
method is not to_string() but ToString(). The name must be ToString() in
order to make the method automatically invoked by the compiler.

Class Date is written into its own source program file named Date.cs. When you use
the class in a program that is in a different source program file, you have to compile the
program so that you also mention the file name Date.cs in the compilation command. For
example, programs Columbus.cs, Birthdays.cs, and Friday13.cs must be compiled with
compilation commands like

csc Columbus.cs Date.cs

csc Birthdays.cs Date.cs

csc Friday13.cs Date.cs

because these programs use the Date class. In order to make the compilations succeed, all
the .cs files that are mentioned in the compilation commands must be in the same directory
(folder). If you compile your C# programs in the Microsoft Visual Studio .NET, you must
include the Date.cs file into those projects which are created for programs Columbus.cs,
Birthdays.cs, and Friday13.cs.

Class Date is a rather simple class that can be used when date information needs to
be stored and handled in a program. Because the Date class is rather simple, it is a useful
tool to study the nature of classes. However, the Date class is not a standard C# class, and
therefore it cannot be recommended for wider use. C# has a standard class named
DateTime that can be used to handle both date and time information. When you stop
doing just programming exercises and start writing more serious programs, it is probably
better that you learn to use the DateTime class. That class will be introduced later in this
book.

A first exercise with Date objects
Exercise 11-1. Write a program that calculates the chronological distance in years, months, and days from your

birthday to any date that is given from the keyboard. You should, of course, use objects of class
Date in this program. By studying program Columbus.cs you can find out how the chronolog-
ical distance between two Date objects can be calculated. Program Birthdays.cs shows you
how a date string can be converted into a Date object. You need the following kinds of state-
ments in your program:

Date my_birthday = new Date(... // Your birthday here !

string given_date_as_string = ...

Date given_date = new Date(...

Columbus.cs - X. Outputting information related to dates.

D:\csfiles3>Columbus

 Christopher Columbus discovered America on 10/12/1492
 That was a Wednesday

 Apollo 11 landed on the moon on 20.07.1969
 That was a Sunday

 America was discovered 476 years, 9 months, and 8 days
 before the first moon landing.

Those dates that are
initialized in format
MM/DD/YYYY are
also printed this way.

11.1 Class Date – an example of a larger class 339

// Columbus.cs (c) Kari Laitinen

// Compilation: csc Columbus.cs Date.cs

using System ;

class Columbus
{
 static void Main()
 {
 Date date_of_discovery_of_america = new Date("10/12/1492") ;

 Date date_of_first_moon_landing = new Date("20.07.1969") ;

 Console.Write(
 "\n Christopher Columbus discovered America on "
 + date_of_discovery_of_america + "\n That was a "
 + date_of_discovery_of_america.get_day_of_week()) ;

 Console.Write(
 "\n\n Apollo 11 landed on the moon on "
 + date_of_first_moon_landing + "\n That was a "
 + date_of_first_moon_landing.get_day_of_week()) ;

 int years_between, months_between, days_between ;

 date_of_discovery_of_america.get_distance_to(
 date_of_first_moon_landing,
 out years_between,
 out months_between,
 out days_between) ;

 Console.Write("\n\n America was discovered "
 + years_between + " years, "
 + months_between + " months, and "
 + days_between + " days"
 + "\n before the first moon landing.\n") ;
 }
}

The first date object that is created here is initial-
ized with an American style date MM/DD/YYYY.
The other Date object is initialized in the European
way DD.MM.YYYY.

Here, method get_distance_to() calculates the chronological distance
from date_of_discovery_of_america to date_of_first_moon_-
landing. It writes the calculation result in variables years_between,
months_between, and days_between.

Date objects can be joined to strings
with operator + because there is the
method ToString() in class Date. The
ToString() method is called automati-
cally when operator + works as the string
concatenation operator. Method
get_day_of_week() returns either
"Monday", "Tuesday", ..., or "Sunday",
depending on what is the day of week of
the Date object.

Columbus.cs - 1. Demonstrating the use of Date objects.

Class Date is declared in a separate
C# source program file that is
explained as a separate program
description later in this chapter. You
can use class Date in your program,
when you include Date.cs in the com-
pilation command.

340 Chapter 11: More advanced classes

// Birthdays.cs (c) 2003 Kari Laitinen

// Compilation: csc Birthdays.cs Date.cs

using System ;

class Birthdays
{
 static void Main()
 {
 Console.Write("\n Type in your date of birth as DD.MM.YYYY"
 + "\n or MM/DD/YYYY. Use four digits for the year"
 + "\n and two digits for the month and day: ") ;

 string date_of_birth_as_string = Console.ReadLine() ;

 Date date_of_birth = new Date(date_of_birth_as_string) ;

 Console.Write(
 "\n You were born on a " + date_of_birth.get_day_of_week()
 + "\n Here are your days to celebrate. You are\n") ;

 int years_to_celebrate = 10 ;

 while (years_to_celebrate < 80)
 {
 Date date_to_celebrate = new Date(

 date_of_birth.day(),
 date_of_birth.month(),
 date_of_birth.year() + years_to_celebrate,
 date_of_birth.get_date_print_format()) ;

 Console.Write("\n " + years_to_celebrate
 + " years old on " + date_to_celebrate
 + " (" + date_to_celebrate.get_day_of_week() + ")") ;

 years_to_celebrate = years_to_celebrate + 10 ;
 }
 }
}

This object creation results in a
call to the fourth constructor that
takes a string reference as a parame-
ter. A date that is stored in a string is
converted into a Date object.

As variable years_to_celebrate
is incremented by 10 at the end of the
loop, the program prints the dates for
when the person is 10 years old, 20 years
old, 30 years old, etc.

Birthdays.cs - 1. A program that finds the dates for the most important birthday parties.

Here a new Date object is created each time the
internal statements of the loop are executed. This
statement invokes the Date constructor that takes
four parameters. years_to_celebrate is always
added to the birth year. day(), month(), year(),
and get_date_print_format() are short meth-
ods that return the values of the corresponding
fields. The values of the fields of an existing Date
object are used to create a new Date object.

11.1 Class Date – an example of a larger class 341

Birthdays.cs - X. The program is executed here with the input date July 14, 1977.

D:\csfiles3>Birthdays

 Type in your date of birth as DD.MM.YYYY
 or MM/DD/YYYY. Use four digits for the year
 and two digits for the month and day: 14.07.1977

 You were born on a Thursday
 Here are your days to celebrate. You are

 10 years old on 14.07.1987 (Tuesday)
 20 years old on 14.07.1997 (Monday)
 30 years old on 14.07.2007 (Saturday)
 40 years old on 14.07.2017 (Friday)
 50 years old on 14.07.2027 (Wednesday)
 60 years old on 14.07.2037 (Tuesday)
 70 years old on 14.07.2047 (Sunday)

When you run this program
on your own computer, it is
important that you use
leading zeroes when you
give information of days
and months. The program
would not work if you
wrote here 14.7.1977 or 7/
14/1977. This advice also
concerns program
Friday13.cs.

Some facts about our Gregorian Calendar

The calendar that is commonly used in most countries of the world is called the Gregorian Calendar because its
development was initiated by Pope Gregory XIII. The Gregorian Calendar was taken into use in Roman Catholic
countries in 1582, and within a couple of centuries the new calendar was in use in most European countries and the
United States.

The calendar that was used before the Gregorian Calendar is called the Julian Calendar because it was devel-
oped and taken into use by following the orders of Julius Caesar. The problem with the Julian Calendar was that it
had too many leap years because every fourth year was a leap year. This resulted in that, after a longer period of
use, the Julian Calendar was behind the actual time. The problems of the Julian Calendar were corrected by the Gre-
gorian Calendar that has more complex rules for calculating leap years (see method this_is_a_leap_year() in
class Date). When the Gregorian Calendar was taken into use in 1582, 10 days were dropped from October. Thurs-
day October 4 was followed by Friday October 15.

Because a new calendar has been taken into use since the days of Christopher Columbus, the information pro-
vided in program Columbus.cs is not entirely true. Columbus was using the Julian Calendar when he found Amer-
ica on October 12, 1492. That day is October 21, 1492, according to the Gregorian Calendar.

Although the Gregorian Calendar is the de facto official calendar of the present world, there are also other
calendars in use. The Gregorian Calendar is not perfect either. One of its problems is that the week system of the
calendar is not synchronized with the month system. Therefore the calendar is different every year. It is possible to
specify calendars that are more stable than the Gregorian Calendar. Such calendars would make it easier to plan
various activities in society. You can find information of proposed new calendars if you search the Internet with
keywords like "calendar reform" and "world calendar".

