
546 Chapter 16: Going closer to the machine

16.2 Playing with the time in programs – introduction to threads

Operating systems like Windows XP, UNIX, and Linux allow several programs to be exe-
cuted simultaneously on a computer. These operating systems can share the processor time
between several executing programs. The executing programs are represented by indepen-
dent processes that are controlled by the operating system. An operating system that is
able to run several processes simultaneously is called a multitasking operating system.
When you work with your personal computer, you may have several windows open on the
screen, and each window may belong to a different application or program that is run as an
independent process by the operating system. For example, if you run a C# program in a
command prompt window, that program is an independent process, and at the same time
the operating system can run other independent processes like an Internet browser process
or a program editor process.

A multitasking operating system that is capable of running several processes simul-
taneously does not really execute the processes simultaneously, but it executes a process
for a while, then stops the process, and puts the next waiting process into execution. A
multitasking operating system has a list of processes it has to execute, and it gives proces-
sor time for each process on the list. As each process gets frequently a small slice of pro-
cessor time, it seems that all processes are executed simultaneously. As we humans are
slow when compared to the processing speed of a computer, a multitasking operating sys-
tem can easily give us the illusion that things are happening simultaneously.

Each running program (application) is represented by a process that is controlled by
the operating system of a computer. The machine instructions of the program (application)
are inside the process, and those machine instructions are executed when the operating
system decides to give processor time for the process. In addition to the application pro-
cesses, the operating system executes special system processes that are needed for the
proper operation of the computer. In fact, the operating system itself is also a process or a
set of processes that get a share of the processor time.

It is essential in the concept of a process that processes are controlled by the operat-
ing system. An application process cannot start running by itself. The operating systems
starts an application process after the user of the computer has commanded it to start the
application. An application process, such as a C# program, can, however, create subpro-
cesses that are called threads. A thread is also an independently running piece of program
but it is not so "big a player" as a process is. You can think of threads as subprocesses
within a process. As we shall see very soon, it is possible that the Main() method of a C#
program creates threads that run simultaneously with the Main() method, which is itself a
thread. Such a situation is described in Figure 16-4 where a C# application program is run-
ning as a process together with other processes, and inside the C# application process
there are several threads running simultaneously.

On the following pages, you can find three example programs, DotsAndDollars.cs,
Playtime.cs, and Clock.cs, in which the Main() method creates one or two threads. The
method Main() is itself a thread in the mentioned programs. A thread can be created with
the standard class Thread with a statement like

Thread thread_name =
 new Thread(new ThreadStart(method_for_the_thread)) ;

This statement creates an object of type Thread by first creating an instance of type
ThreadStart. If a thread is created with the above statement, and it is started with the
statement

thread_name.Start() ;

a method named method_for_the_thread() starts executing simultaneously with the
method that contains these statements.

These are sample pages from Kari Laitinen’s book
"A Natural Introduction to Computer Programming with C#".
For more information, please visit
http://www.naturalprogramming.com/csbook.html

16.2 Playing with the time in programs – introduction to threads 547

ThreadStart is a so-called delegate type. A delegate type specifies a certain kind
of method. An instance of a delegate type can contain a reference to a method. The
ThreadStart type is such that only methods that take no parameters and that have void
as their return type can be supplied as a parameter when a ThreadStart instance is cre-
ated. Therefore, a method that can be executed concurrently as a separate thread must be
of the form

static void method_for_the_thread()
{
 ...
}

or be a similar non-static method.
When a method that is executed concurrently as a separate thread terminates, the

thread terminates, and you cannot restart the thread by calling again the Start() method.
It is possible, and sometimes even necessary, to create threads that do not terminate. Such
a thread can be created by using an infinite loop like

while (true)
{
 ...
}

Infinite loops should not exist in conventional programs, but in applications that run sev-
eral threads in parallel they can be considered appropriate. In programs DotsAndDol-
lars.cs and Clock.cs, infinite loops are used in the methods that are executed as
independent threads. The infinite loops are terminated when threads are aborted with the
Abort() method. Program Playtime.cs shows how threads can be terminated with the
help of a boolean variable, without using the Abort() method.

Figure 16-4. An operating system executing application processes concurrently.

C# Application
process

 Operating System

 COMPUTER HARDWARE

Internet browser
process

Editor program
process

Music player
process

These large balls describe application processes.
The operating system also executes system pro-
cesses but they are not shown.

The small balls inside the C# applica-
tion process are threads that the appli-
cation itself has created.

.NET runtime environment

548 Chapter 16: Going closer to the machine

// DotsAndDollars.cs

using System ;
using System.Threading ;

class DotsAndDollars
{
 static void print_dots()
 {
 while (true)
 {
 Thread.Sleep(1000) ; // Wait one second.
 Console.Write(" .") ;
 }
 }

 static void print_dollar_signs()
 {
 while (true)
 {
 Thread.Sleep(4050) ; // Wait 4.05 seconds.
 Console.Write(" $") ;
 }
 }

 static void Main()
 {
 ThreadStart method_for_thread_to_print_dots =
 new ThreadStart(print_dots) ;
 Thread thread_to_print_dots =
 new Thread(method_for_thread_to_print_dots) ;

 Thread thread_to_print_dollar_signs =
 new Thread(new ThreadStart(print_dollar_signs)) ;

 thread_to_print_dots.Start() ;
 thread_to_print_dollar_signs.Start() ;

 Console.Write("\n Press the Enter key to stop the program. \n\n") ;

 string any_string_from_keyboard = Console.ReadLine() ;

 thread_to_print_dots.Abort() ;
 thread_to_print_dollar_signs.Abort() ;
 }
}

Method print_dots() represents a thread in
this program. After the thread is created by method
Main(), this method is executed independently. The
while loops in this program are infinite loops that
are terminated by aborting the threads.

This program starts executing like any other pro-
gram, so that activities begin in the Main() method.
However, after these statements are executed, there
are three threads running in parallel, and each method
of this program is executed as an independent thread.
The task of method Main() is to wait until the user
presses the Enter key.

The Abort() method of class
Thread is used to terminate the two
threads that are executing in parallel.
The thread that runs the Main()
method terminates automatically
when the end of the Main() method is
reached.

DotsAndDollars.cs - 1.+ A program that runs as three threads.

Thread.Sleep() is a
method with which a tread
can suspend itself for a cer-
tain period of time. The
sleeping times are speci-
fied in milliseconds.

16.2 Playing with the time in programs – introduction to threads 549

 ThreadStart method_for_thread_to_print_dots =
 new ThreadStart(print_dots) ;
 Thread thread_to_print_dots =
 new Thread(method_for_thread_to_print_dots) ;

 Thread thread_to_print_dollar_signs =
 new Thread(new ThreadStart(print_dollar_signs)) ;

The other Thread object is created without giving a name to the
delegate of type ThreadStart. An instance of delegate type
ThreadStart is created first, and that delegate is passed to the con-
structor of class Thread. This object creation statement specifies that
print_dollar_signs() is the method that is to be executed when
the created thread is activated with the Start() method.

DotsAndDollars.cs - 1 - 1. Creation of the two Tread objects.

A new thread can be taken into use by first creating an object
of the standard class Thread, and then calling method Start()
for the Thread object. Before a Thread object can be created, it
is necessary to specify which method is to be executed by the
new thread. The mechanism for specifying the method is such
that you first have to specify a so-called delegate of type
ThreadStart, and then you supply that delegate to the con-
structor of class Thread.

DotsAndDollars.cs - X. The program has been executing here about 173 seconds.

D:\csfiles3>DotsAndDollars

 Press the Enter key to stop the program.

 $ $ $ $ $ $ $ $
 $ $ $ $ $ $ $ $
 $ $ $ $ $ $ $
 $ $ $ $ $ $ $ $
 $ $ $ $ $ $ $ $
 $ $ $. . .

The dots are printed by the thread that executes method print_dots() and the dollar
signs are printed by the thread that executes method print_dollar_signs().
Because the interval between the printing of dollar signs is 4.05 seconds and not
exactly 4 seconds, after a certain time method print_dots() is executed 5 times
before method print_dollar_signs() gets its turn.

