
CHAPTER 4

LOGICAL OPERATING PRINCIPLES OF COMPUTERS

The most important parts in a computer are its processor and its main memory that can be 
read and written by the processor. For a computer to do something useful, there must be an 
executable program in its main memory. An executable program is a sequence of machine 
instructions which the processor of the computer can read and interpret.

In this chapter, we shall study machine instructions and some general operating principles 
of computers. First, we will examine the operation of the main memory. Then we will 
study a processor and programs which are executed by the processor. You will learn how 
some basic computing activities, like repetition and subroutine calling, are performed at 
the machine level. This will help you to understand high-level C# programming in later 
chapters.

The general operating principles of computers will be explained with the help of an imagi-
nary computer which can be regarded as a logical model of real computers. All computers 
which are commonly used operate according to the same principles as the imaginary com-
puter, although the imaginary computer is simpler than a real computer.  The simplicity of 
the imaginary computer makes it an ideal instrument for learning the basics of computer 
operation. The computer is imaginary because it has not been built by using electronic or 
any other physical components. The Internet site of this book provides, however, simula-
tion programs that imitate the imaginary computer on a real computer.

© Copyright 2004-2005 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to 
Computer Programming with C#. These pages may be used only by individuals 
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only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in 
a retrieval system or lend these pages in public or private libraries. 
For more information about Kari Laitinen’s books, please visit
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4.1  How does the main memory operate?

Computers are able to process information that is stored in their memory in binary form.
There are basically two kinds of memory devices in a computer. The main memory is built
of RAM memory devices. (RAM is an abbreviation of Random Access Memory.) All
other memory devices can be considered auxiliary memory devices. The main memory of
a computer is more important than the auxiliary memory devices because programs that
are being executed must be kept in the main memory. A computer must have a main mem-
ory in order to operate. Although computers like PCs are equipped with auxiliary memory
devices (e.g. hard disk), it is possible to build computers without the auxiliary devices.

The main memory of a computer is a device which can be read from and written to
by the processor of the computer. Figure 4-1 illustrates a small main memory that is only
16 bytes (16 x 8 bits) in size. Computers generally have a much larger main memory, but
we can study the memory operations with just this small main memory. Figure 4-1 shows
that four address lines A0, A1, A2, and A3 are needed to select one of the 16 bytes in the
memory. The memory addressing control takes care that the right memory location is
selected when a certain bit combination is switched to the address lines.

While studying the memory device in Figure 4-1, we suppose that it can be used by
switching  either zero Volts (0V) or five Volts (5V) to the lines of the device. By switching
various voltages to the address lines, it is possible to select certain memory locations, for
example in the following way:

A3 A2 A1 A0      MEANING

0V 0V 0V 0V      memory address 0 is selected
0V 0V 0V 5V      memory address 1 is selected
0V 5V 0V 5V      memory address 5 is selected
5V 0V 0V 5V      memory address 9 is selected
5V 5V 5V 5V      memory address 15 is selected

The main memory of a computer has data lines through which information is either
moved into the memory (writing of data), or information is moved out of the memory
(reading of data). In Figure 4-1 there are 8 data lines D0, D1, D2, D3, D4, D5, D6, and D7
through which one byte of information can either be written to or read from the memory.

Address lines are used to select the desired location in the memory, and data lines are
needed to carry information to/from the memory. In addition to address and data lines,
there are usually control lines and power supply lines in memory devices. The control
lines ensure that the reading and writing operations are carried out in an accurate manner.
The memory device in Figure 4-1 has two control lines which have names READ MEM-
ORY and WRITE MEMORY. With these lines (signals) the processor which is using the
memory device can perform either a writing operation or a reading operation. Power sup-
ply lines are needed to supply electricity for physical memory components, but for sim-
plicity these lines are left out from Figure 4-1.

The control signals of a memory device are activated by the processor that is using
the memory. The control signals of the memory device in Figure 4-1 can have the follow-
ing values and meanings

WRITE MEMORY  READ MEMORY    MEANING

   0 (0V)       0 (0V)       No memory operations
   0 (0V)       1 (5V)       Read selected memory address
   1 (5V)       0 (0V)       Write selected memory address
   1 (5V)       1 (5V)       Not allowed combination
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Memory read/write control

 D0 D1 D2 D3 D4 D5 D6 D7

READ MEMORY

WRITE MEMORY

 A0

 A1

 A2

 A3

  0  0000B  0H

  1  0001B  1H

  2  0010B  2H

  3  0011B  3H

  4  0100B  4H

  6  0110B  6H

  7  0111B  7H

  9  1001B  9H

 10  1010B  AH

 11  1011B  BH

 12  1100B  CH

 13  1101B  DH

 14  1110B  EH

 15  1111B  FH

  5  0101B  5H

  8  1000B  8H

These are the numerical mem-
ory addresses of the 16 memory 
locations expressed in three differ-
ent numbering systems.

24 = 16 different memory locations can be 
accessed with four address lines. This memory 
is organized so that one byte of memory can be 
read or written at a time.

Figure 4-1.  A theoretical 16-byte main memory device.

Through these 8 data lines one 
byte of information can either be writ-
ten to the memory or read from the 
memory. These lines can carry infor-
mation in two directions.

These lines are signals to control memory 
operations. When a 1 (5V) is switched to the line 
WRITE MEMORY, it means that the byte that is 
in the data lines is written to the memory location 
that is specified by the address lines.
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For example, if a processor wants to write the binary number 01101110B into mem-
ory address 5 of the memory device in Figure 4-1, it must switch the following voltages to
the various lines:

Address lines    Data lines                  Control lines

                                             WRITE    READ
A3 A2 A1 A0      D7 D6 D5 D4 D3 D2 D1 D0     MEMORY   MEMORY

0V 5V 0V 5V      0V 5V 5V 0V 5V 5V 5V 0V       5V       0V

With the above voltages in the address lines, the address 0101B (5 decimal) is selected.
When address 0101B is switched to the address lines and the WRITE MEMORY signal is
active, the binary number that is switched to the data lines is stored in memory address 5
(0101B) and the information that was previously in that location is written over and lost.
This is how writing to the main memory takes place. The WRITE MEMORY signal must
be 1 (5V) and the READ MEMORY signal must be 0 (0V) at the moment when data is
stored in the memory.

Different memory locations can be written by switching different addresses (differ-
ent voltage combinations) to the address lines. Figure 4-2 shows a timing diagram that
describes four writing operations on the memory device of Figure 4-1. Time goes from left
to right in the diagram, and voltages are altered in all of the lines that enter the memory
device. Note that the address and input data are always changed before the actual writing
takes place. Data is written when the WRITE MEMORY signal goes up. For you to under-
stand Figure 4-2 properly, it may be useful to mark zeroes or ones on those points where
input signals change state.

A memory device like the one in Figure 4-1 keeps its contents as long as no memory
locations are written over in writing operations. A reading operation cannot change the
data stored in a memory device. When a reading operation is activated, the data lines of a
memory device work in the opposite direction as for a writing operation. A memory loca-
tion in the memory device of Figure 4-1 can be read by setting the address of the memory
location on the address lines and activating the READ MEMORY signal. For example, if
the lines of the memory device would be set to voltages

A3 A2 A1 A0      WRITE MEMORY     READ MEMORY

0V 5V 5V 0V         0V              5V

the data in the memory address 6 (0110B) would be copied to the data lines. The processor
which is using the memory device could then read the data from the data lines.

Exercise related to main memory usage

Exercise 4-1. Below, write the voltages that need to be switched to address and data lines in Figure 4-1 in 
order to write the decimal number 97 into memory address 9 of the memory device. Which 
voltages must simultaneously be switched to the control lines?

Address lines         Data lines

A3  A2  A1  A0        D7  D6  D5  D4  D3  D2  D1  D0
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Figure 4-2.  Writing four memory locations in the memory device of Figure 4-1.

READ MEMORY

WRITE MEMORY

Selected address 0101B (5H) 1111B (FH) 1001B (9H)

A0

A1

A2

A3

D0

D1

D2

D3

D4

D5

D6

D7

1010B (AH)

Byte to write 01101110B 10111101B 11011001B10011111B

Moment of writing
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4.2  The components of an imaginary computer

Now, after having studied how the main memory of a computer can be accessed, we can
start investigating the imaginary computer presented in Figure 4-3. This computer is an
imaginary one, because it exists only on these pages and in our minds. It would be possi-
ble to use electronic components to build this kind of a computer, but because the imagi-
nary computer has been created solely for educational purposes, a "real" imaginary
computer would not be as good as the existing commercially available computers. The
imaginary computer in Figure 4-3 is a general model of a computer, and it teaches us how
real computers work. The Internet site of this book provides simulation programs which
show how the imaginary computer would behave if it were built.

As shown in Figure 4-3, the imaginary computer consists of a main memory, a pro-
cessor, a keyboard, and a screen. The keyboard and the screen are connected by cables to
the processor. The keyboard is an input device through which input data can be supplied to
the processor. For example, if the user of the imaginary computer presses key A on the
keyboard, the character code of letter A, 41H, is transferred to the processor. Similarly, the
processor can output data by sending character codes to the screen. The screen is an output
device which shows the character codes as visible characters. For example, if the proces-
sor sends code 42H to the screen, it appears as letter B on the screen.

The main memory in Figure 4-3 is similar to the smaller memory that we saw in Fig-
ure 4-1. The difference is that the main memory of our imaginary computer is 16 times
larger than the memory in Figure 4-1. The imaginary computer has 8 address lines A0, A1,
A2, A3, A4, A5, A6, and A7 which make it capable of addressing all 256 bytes of the
main memory. Note that not all memory locations are shown in Figure 4-3. The main
memory of our imaginary computer is very small when compared to modern commer-
cially available computers, whose main memory consists of millions of bytes.

The imaginary processor uses two control signals, READ MEMORY and WRITE
MEMORY, to either read or write data from/to the main memory. The processor can
access one byte of memory at a time. For example, if the processor wants to access the
memory location A2H (10100010B), it has to set the following voltages to the address
lines

A7  A6  A5  A4  A3  A2  A1  A0      address lines

5V  0V  5V  0V  0V  0V  5V  0V      voltages

1   0   1   0   0   0   1   0       binary memory address

When a memory location has been selected by switching appropriate voltages to the
address lines, the processor can read the contents of that memory location by setting the
READ MEMORY signal to 1 (5V), or it can write the memory location by setting the
WRITE MEMORY signal to 1 (5V). In a reading operation, the contents of the selected
memory location are copied as 0V and 5V voltages to the data lines D0, D1, D2, D3, D4,
D5, D6, and D7. In a writing operation, the voltages on the data lines are copied to the
selected memory location, and the old contents of the memory location are lost.

The processor of the imaginary computer is a complex device which is capable of
switching voltages of 0V or 5V on the address, data, and control lines. In some situations
it can read voltages from the data lines. 0V means binary 0 and 5V means binary 1 for the
processor. The processor is made active by supplying a clock signal to it. The clock signal
is such that its voltage varies constantly between zero and one. If the clock signal goes
from zero to one and back to zero 200 times in a second, we say that the processor uses a
200 Hz clock. As we shall learn later, the processor keeps repeating a certain sequence
when it is working. The clock signal determines how fast the processor does its job. In our
imaginary computer the speed of the processor is not essential, but we must imagine that
there is a clock signal which makes the processor active.
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Figure 4-3.  An imaginary computer with a 256-byte main memory.



54 Chapter 4: Logical operating principles of computers

4.3  Inside the imaginary processor

A processor is certainly the most complex electronic device inside a computer. Processors
control nearly all activities in computers. A processor receives a clock signal according to
which all activities are performed in a strict time schedule. Processors are called by that
name because they process machine instructions which are placed in the main memory. A
sequence of machine instructions in the main memory is a program which defines the
behavior of the processor. Although it is a complex and fine device, a processor cannot do
anything clever without the instructions that are given in a program.

Figure 4-4 describes the main parts of the imaginary processor which is the brain of
our imaginary computer. There are many lines and signals which can be found both in Fig-
ure 4-4 and Figure 4-3. The eight data lines and the eight address lines that connect the
processor to the main memory are drawn as two thick lines in Figure 4-4. These thick lines
are called buses in processor technology. Our imaginary processor has an 8-bit data bus
and 8-bit address bus. The smaller rectangles in Figure 4-4 are registers that can store 8-bit
numerical values. All registers are connected with an 8-bit bus to the  PROCESSOR
LOGIC that controls the processor. Because the internal data bus in the imaginary proces-
sor is an 8-bit bus, and all the internal registers inside the processor are 8-bit registers, we
can say that the processor is an 8-bit processor, or the processor has an 8-bit architecture.

The internal registers of a processor, such as REGISTER A and REGISTER B in
Figure 4-4, are small pieces of memory to store numerical values in binary form. As the
registers of the imaginary processor are 8-bit registers, they can store numerical values 0,
1, 2, 3, 4, ..., 253, 254, and 255. The operation of the imaginary processor and the entire
imaginary computer is based on elementary actions with numerical values stored in the
internal registers. The PROCESSOR LOGIC can perform the following kinds of actions
with the values stored in the internal registers:

• The content of one register can be copied to another register.

• The content of a register can be copied to a certain location in the main memory of
the computer.

• A byte stored in a location in the main memory can be copied to an internal register
of the processor.

• A numerical value stored in one register can be added to the numerical value in an-
other register.

• The numerical value stored in a register can be incremented by one.

• It is possible to find out which one of two registers contains a larger numerical val-
ue.

Although all registers inside the imaginary processor are 8-bit registers, different
registers have different roles in relation to the operation of the processor. The registers of
the imaginary processor can be classified in the following way:

• REGISTER A and REGISTER B are general-purpose registers which can be used
to transfer data to/from the main memory. Arithmetic operations can be carried out
with the values in REGISTER A and REGISTER B.

• Registers INSTRUCTION CODE and INSTRUCTION OPERAND are used to
store a machine instruction and its operand.

• Registers PROGRAM POINTER, MEMORY POINTER, and STACK POINTER
are used to store memory addresses for different purposes. PROGRAM POINTER
contains the address of the next instruction in a program. MEMORY POINTER is
needed to move a byte between the general-purpose registers and the main memo-
ry. STACK POINTER contains the address of the first free position on the stack.
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Figure 4-4.  The internal structure of the imaginary processor.

*) There is a connection from the PROGRAM POINTER 
register to the 8-bit data bus. This connection is used when 
the content of PROGRAM POINTER is stored to stack dur-
ing subroutine calls.

*)

*)
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• INPUT PORT and OUTPUT PORT are different from the other registers. They are
ports through which the processor can communicate with the outside world. The
screen cable is connected to the OUTPUT PORT, and the keyboard cable is con-
nected to the INPUT PORT. When a character code is written to the OUTPUT
PORT, a character corresponding to that character code appears on the screen.
When the user of the imaginary computer presses a key on the keyboard, the char-
acter code corresponding to the pressed key is transferred to the INPUT PORT.

The largest part of the processor in Figure 4-4 is the rectangle that is labeled PRO-
CESSOR LOGIC. We can imagine that PROCESSOR LOGIC contains all necessary elec-
tronic circuitry to control the entire processor. The machine instructions, which we will
study in the next section, are interpreted and processed by the PROCESSOR LOGIC. At
this phase the role of PROCESSOR LOGIC may be somewhat obscure, but it will become
clearer when we learn how the processor operates when it executes a program.

Various signals are drawn in Figure 4-4. The purpose of electronic signals in proces-
sors is to synchronize processor activities. The signals drawn in Figure 4-4 have the fol-
lowing meanings:

• With signals READ MEMORY and WRITE MEMORY the processor tells the
main memory whether it wants to read from or write to it.

• Signal INPUT READY is an input signal that is sent from the INPUT PORT to the
PROCESSOR LOGIC. This signal is needed to ensure that the processor reads an
input character only once. By setting this signal to value 1, the INPUT PORT says
to PROCESSOR LOGIC that it has received a character from the keyboard, and
the character code is available in the INPUT PORT. The value of INPUT READY
is set to 0 when the character is read away from the INPUT PORT.

• Signals SELECT PROGRAM POINTER and SELECT MEMORY POINTER are
used to control the MEMORY ADDRESS SELECTION SWITCH that can con-
nect one of the three pointer registers to the address lines which go to the main
memory. These signals are needed because the pointer registers PROGRAM
POINTER, MEMORY POINTER, and STACK POINTER can contain different
memory addresses of which only one address can be used at a time. These signals
work so that if SELECT PROGRAM POINTER is set to value 1 and SELECT
MEMORY POINTER is set to value 0, register PROGRAM POINTER is selected.
If SELECT PROGRAM POINTER has value 0 and SELECT MEMORY POINT-
ER has value 1, register MEMORY POINTER is selected. If both signals have val-
ue 0 or both signals have value 1, register STACK POINTER is selected.

   These are sample pages from Kari Laitinen’s book
   A Natural Introduction to Computer Programming with C#.
   For more information, please visit
   http://www.naturalprogramming.com/
   © Copyright 2004-2005 Kari Laitinen. All rights reserved.
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4.4  Machine instructions

Computers are machines that process information. For this reason, the most elementary
instructions that are interpreted by a processor of a computer are called machine instruc-
tions. A series of machine instructions form a program that can be executed by a processor.
The program is placed in the main memory, from where the processor can automatically
read the program, instruction by instruction.

The machine instructions of a processor are unique numerical codes which cause the
processor to act in a certain way. Machine instructions determine what the processor does.
We can say that a processor can understand machine instructions which are fed to it via the
main memory. Machine instructions thus form a machine language which is uniquely
meaningful to the processor.

The machine instructions of our imaginary processor consist of either one or two
bytes. The first byte is the numerical instruction code, according to which the processor
determines what it should do next. Each machine instruction has a different numerical
instruction code. The codes must be different, because otherwise the processor could not
distinguish its machine instructions from one another. Some machine instructions, like the
one in Figure 4-5, are two bytes long. In these instructions, the second byte is an operand
for the actual machine instruction, the first byte. The operand byte can be a numerical
value to be used in an arithmetic operation, or it can be a memory address.

The machine instructions of the imaginary computer are small pieces of information
which the processor reads from the main memory. A complete computer program of the
imaginary processor consists of a sequential list of these small pieces of information.When
the processor reads the machine instructions from the main memory, it places them in the
registers INSTRUCTION CODE and INSTRUCTION OPERAND. When the processor
has done what is required by the current instruction contained in these registers, it copies a
new instruction to these registers, and starts processing that. This kind of one-instruction-
at-a-time processing goes on until the processor finds a "stop processing" instruction in the
main memory.

All machine instructions of the imaginary processor are listed in Table 4-1. The table
contains all the numerical instruction codes, and explains the meaning of each for the pro-
grammer who creates computer programs by using these instructions. The last column of
the table describes what actions the processor performs when it processes each instruction.
The table is called an "instruction decoding table" because we can imagine that there is
such a table, in electronic form, inside the PROCESSOR LOGIC of the imaginary proces-
sor. We can think that when the imaginary processor reads a machine instruction from the
main memory, it consults this kind of a table and, according to what is said in this "instruc-

Figure 4-5.  Instruction "load register A with value" of the imaginary computer.

 0  0  0  1  0  1  0  1

 0  1  0  0  0  0  1  0

This is a two-byte machine instruction that fits nicely 
into two memory locations in the main memory of the 
imaginary computer. Many other machine instructions 
are single-byte instructions. The first byte is the 
instruction code which in this case is 15H.

The second byte provides data for the 
instruction. This byte contains value 42H, the 
character code for letter B. As a result of the 
execution of this instruction, register A will 
be loaded with the character code of B.
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tion decoding table", it then determines what it should do. For example, if the processor
read the instruction 14H, it would use the fourth line of the instruction decoding table
because the instruction with code 14H is explained there. The processor would find out
that it must subtract the content of REGISTER B from the content of REGISTER A, and
place the result in REGISTER A.

You will need to consult Table 4-1 when we start studying example computer pro-
grams in the next section. The nature of the machine instructions will become clearer
when you learn how the imaginary computer actually processes a program. At this point,
you can find out that there are seven categories of instructions in Table 4-1. The category
an instruction belongs to can be identified from the first hexadecimal digit of the instruc-
tion code. For example, instructions for arithmetic and moving operations have codes that
start with 1, and the codes of memory-related instructions start with 2. When an instruc-
tion is a two-byte instruction, its instruction code is odd. Single-byte instructions have
even instruction codes. The operand byte of two-byte instructions is marked either VVH
or MMH in Table 4-1. The values of operand bytes can be anything from 0 to FFH. The
creator of a program determines which values are needed as operands for various machine
instructions. VVH means a value to be loaded to some register or to be used in an arith-
metic operation. MMH means a memory address which is needed by the instruction.

Table 4-1:  Instruction decoding table of the imaginary processor .

Instruc-
tion 
code 
and 
optional 
oper-
and.

Meaning for the programmer Actions taken by the processor

INSTRUCTIONS FOR 
ARITHMETIC AND MOV-
ING OPERATIONS

11H
VVH

"add value to register A" The value VVH, the operand of this instruction, will be added to 
the content of register A. The content of register A will thus be 
incremented by the given value. For example, if the content of reg-
ister A is 34H and VVH is 05H,  the content of register A is 39H 
after the execution of this instruction.

12H "add register B to A" The content of register B is added to the content of register A and 
the result (the sum of the two registers) is placed in register A. The 
old content of register A is lost while the content of register B 
remains untouched.

13H
VVH

"subtract value from register A" The value VVH, the operand of this instruction, will be subtracted 
from register A. The content of register A will thus be decremented 
by the given value. For example, if the content of register A is 34H 
and VVH is 05H, the content of register A is 2FH after this instruc-
tion is executed.

14H "subtract register B from A" The content of register B is subtracted from the content of register 
A. The result (A minus B) is placed in register A, while the content 
of register B remains untouched. For example, if register A has 
value 34H and register B is 12H, register A contains 22H and regis-
ter B contains 12H after this instruction is executed.
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15H
VVH

"load register A with value" The value VVH, the operand byte, will be copied to register A. The 
old content of register A will be lost. For example, if the value 
VVH is 05H, the content of register A will be 05H regardless of its 
previous value.

16H "increment register A" The content of register A will be incremented by 1. For example, if 
the content of register A is 34H, its content will be 35H after the 
execution of this instruction.

17H
VVH

"load register B with value" The value VVH will be copied to register B. The old content of 
register B will be written over and lost. This instruction is similar 
to 15H but this one affects register B.

18H "increment register B" The content of register B will be incremented by 1. For example, if 
the content of register B is 12H, its content will be 13H when this 
instruction is executed.

1AH "decrement register A" The content of register A will be decremented by 1. For example, if 
the content of register A is 34H, it will change to 33H as a result of 
this instruction.

1CH "decrement register B" The content of register B will be decremented by 1. For example, if 
the content of register B is 12H, it will be 11H after the execution 
of this instruction.

1EH "move content of register A to B" The content of register A is copied to register B. The old content of 
register B is written over. After this instruction has been executed, 
both registers have the same content.

MEMORY-RELATED 
INSTRUCTIONS

21H
MMH

"set memory pointer" The memory address MMH that is given as the operand for this 
machine instruction is copied to register MEMORY POINTER. 
With this instruction, it is possible to start manipulating new areas 
of the computer's main memory. The content of MEMORY 
POINTER determines which memory address is affected by 
instructions "store register A to memory", "load register A from 
memory", "store register B to memory", and "load register B from 
memory".

22H "increment memory pointer" The content of MEMORY POINTER is incremented by 1. For 
example, if the old content of MEMORY POINTER is 9BH, its 
new content will be 9CH.

24H "decrement memory pointer" The content of MEMORY POINTER is decremented by 1. For 
example, if the content of MEMORY POINTER is B3H, its content 
will change to B2H.

26H "store register A to memory" The content of register A will be written to that memory location 
which is currently the content of MEMORY POINTER. For exam-
ple, if the content of register A is 34H and the content of MEM-
ORY POINTER is 9BH, the memory location in address 9BH will 
contain value 34H after this instruction has been executed.

Table 4-1:  Instruction decoding table of the imaginary processor (Continued).
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28H "load register A from memory" This is the opposite of instruction "store register A to memory". 
This instruction copies one byte from the main memory to register 
A. The byte that will be copied will be determined by the content of 
MEMORY POINTER. For example, if the content of MEMORY 
POINTER is B3H, this instruction loads register A with the byte 
that is in memory location B3H.

2AH "store register B to memory" This is similar to the instruction with code 26H, but this copies the 
contents of register B to a location in the main memory.

2CH "load register B from memory" This is similar to the instruction with code 28H, but this instruction 
modifies the content of register B.

INSTRUCTIONS RELATED 
TO JUMPING IN PRO-
GRAMS

These instructions modify the content of PROGRAM POINTER. 
"jump to address" modifies it always. Other instructions modify the 
content of PROGRAM POINTER only if certain conditions are 
valid. All these instructions are two-byte instructions. Instruction 
operand MMH is a possible new value for PROGRAM POINTER.

41H
MMH

"jump to address" This instruction performs an unconditional jump in the program by 
modifying the content of register PROGRAM POINTER. The next 
instruction that will be executed after this instruction  is the one 
that resides in the address given in MMH, the operand of this 
instruction. For example, if the value of MMH is 08H, the value of 
PROGRAM POINTER is 08H after this instruction has been exe-
cuted.

43H
MMH

"jump if registers equal" This instruction is a conditional jump within the program. If the 
contents of register A and register B are the same, MMH is copied 
to PROGRAM POINTER, and the next instruction to be executed 
is the one in the address that is given in the operand of this instruc-
tion.

45H
MMH

"jump if register A zero" This is another conditional jump. If the content of register A is 
zero, PROGRAM POINTER is loaded with the value MMH. If 
register A is not equal to zero, the program execution continues in 
the normal way from the instruction that follows this instruction.

47H
MMH

"jump if register A smaller than B" A jump to memory location MMH occurs if the content of register 
A is smaller than the content of register B. If register A is larger 
than or equal to register A, no jump takes place, and the program 
execution continues from the instruction that follows this instruc-
tion.

49H
MMH

"jump if register A greater than B" This is a kind of opposite instruction to the previous one. A jump 
occurs when the content of register A is greater than the content of 
register B. For example, if register A is 34H, register B is 12H, and 
the operand byte MMH is 08H, the value of PROGRAM 
POINTER is changed to 08H because 34H is greater than 12H.

4BH
MMH

"jump if input not ready" This instruction tests whether a byte is ready to be read from the 
input port. This instruction causes a jump if the input is not ready, 
i.e., INPUT READY signal has value 0, which means logically 
FALSE. This instruction is used when a program is waiting for a 
human to give it a byte of data. Because humans tend to be slower 
than computers, a computer program usually has to jump and wait 
until the user of the computer has entered its input.

Table 4-1:  Instruction decoding table of the imaginary processor (Continued).
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INSTRUCTIONS TO HAN-
DLE SUBROUTINE CALLS

81H
MMH

"call subroutine" The execution of this instruction causes a jump to address MMH 
but the execution will eventually return to the instruction that fol-
lows this instruction. This kind of behavior is accomplished by 
storing the current value of PROGRAM POINTER to the stack. 
Three separate actions take places when this instruction is exe-
cuted. First the content of register PROGRAM POINTER is stored 
to that memory address which is the content of register STACK 
POINTER. Then the content of register STACK POINTER is dec-
remented by one. Finally, value MMH is copied to register PRO-
GRAM POINTER.
This way the program execution continues from address MMH. 
PROGRAM POINTER is stored on the stack to be used by the sub-
routine which starts in address MMH. Instruction "call subroutine" 
can be explained with the phrase "go and execute the machine 
instructions starting from address MMH, but come back when you 
encounter the instruction code 82H".

82H "return to calling program" This instruction is a kind of counterpart to the instruction "call sub-
routine". "return to calling program" must be the last instruction in 
a subroutine. It marks the end of a called subroutine and causes a 
return to the calling program. This instruction loads PROGRAM 
POINTER with the memory address that was put to the stack by 
instruction "call subroutine". This causes a return to the instruction 
that immediately follows the "call subroutine" instruction in the 
calling program. The following two actions take place when this 
instruction is executed:
The value in register STACK POINTER is incremented by one.
Register PROGRAM POINTER is loaded from the memory 
address which is the content of register STACK POINTER.

INPUT/OUTPUT INSTRUC-
TIONS

92H "output byte from register A" This instruction is used when a program wants to output a character 
to the screen. The instruction copies the content of register A to 
OUTPUT PORT. A character code must be present in register A 
before this instruction can be successfully executed. The result of 
the execution is that the character corresponding to the character 
code in register A is displayed on the screen. The OUTPUT PORT 
works so that always when a character code is written to it, the cor-
responding character appears on the screen. 

94H "output byte from register B" This is similar to the previous instruction, but this one outputs the 
content of register B.

96H "input byte to register A" This instruction is used when a program wants to input a character 
code from the keyboard to register A. The instruction copies a byte 
from the INPUT PORT to register A. Signal INPUT READY indi-
cates whether a character code of a character has been received 
from the keyboard to INPUT PORT. INPUT READY must have 
value 1 (i.e. TRUE) before this instruction can be executed. After 
the input character code has been copied to register A, INPUT 
READY is set back to zero.

Table 4-1:  Instruction decoding table of the imaginary processor (Continued).
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STACK INSTRUCTIONS

A1H
MMH

"set stack pointer" This instruction is rarely needed because register STACK 
POINTER is set to value FFH when the imaginary computer is 
switched on. The last bytes of the main memory are thus used as 
stack. With this instruction it is possible to select a new memory 
area to be used as stack memory. Value MMH is copied to register 
STACK POINTER when this instruction is executed.

A2H "push register A to stack" This instruction stores (pushes) register A to the top of the stack. 
Register STACK POINTER always contains a value that "points" 
to the first free memory location on the stack. This instruction 
causes two separate actions: first the content of register A is stored 
to that memory address which is the content of register STACK 
POINTER, and then the memory address in STACK POINTER is 
decremented by one. The stack thus grows towards the smaller 
memory addresses. After this instruction has been executed, the 
topmost element on the stack and register A contain the same infor-
mation.

A4H "pop register A from stack" This instruction performs an opposite operation compared to the 
actions caused by the previous instruction. First, the memory 
address in register STACK POINTER is incremented by one, and 
then register A is loaded from the memory address that is in regis-
ter STACK POINTER.  This instruction takes away that byte that 
was the last one pushed to the stack. The stack gets smaller when 
this instruction is executed.

INSTRUCTION TO HALT 
THE PROCESSOR AT THE 
END OF A PROGRAM

B2H "stop processing" This is a special kind of instruction which stops the imaginary pro-
cessor entirely. This instruction marks the end of the program. No 
more instructions will be executed after this one until imaginary 
electricity is switched off and on again.

Table 4-1:  Instruction decoding table of the imaginary processor (Continued).
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A classification of computers

Both the technology and terminology related to computers are evolving rapidly, and there exist different terms to 
describe different types of computers. Much of this terminology may be somewhat confusing. The following list 
may reduce the confusion to some extent.

• Supercomputers are large computers and they are the fastest computers in the world. Supercomputers 
have been built by using special electronic components and processors. Supercomputers are used to run 
applications that perform massive calculations. Such applications include various scientific and military 
applications. Weather forecasting is one application domain where supercomputers have traditionally 
been used.

• Mainframe computers are those computers that, at least some decades ago, tended to occupy entire air-
conditioned rooms. Mainframe computers are used by large organizations like government offices, banks, 
and insurance companies who need to process massive amounts of data. The most famous provider of 
mainframe computers is without doubt IBM (International Business Machines).

• Minicomputers are something smaller than mainframe computers. The term "minicomputer" is not 
widely used any more, probably because minicomputers have become equally small as microcomputers 
or microcomputers have become equally efficient as the traditional minicomputers.

• The term "microcomputer" was brought into use to describe computers that could be placed on a table, 
and were built by using the commercially available microprocessors. Obviously the world’s most well-
known software company was originally named as Microsoft because the company produced software for 
microcomputers.

• The term "personal computer" (PC) was brought into use when IBM introduced its IBM Personal Com-
puter in 1981. The original IBM PC was running an operating system from Microsoft. Nowadays, a per-
sonal computer (PC) is any computer that runs the Windows operating system.

• The term "workstation computer", or simply "workstation", has traditionally meant a powerful desktop 
computer that runs the UNIX operating system. Nowadays the distinction between a workstation and a 
personal computer is harder to make.

• A server computer serves other computers connected to a local network of computers. Server computers 
are typically connected to other servers. The Internet is a worldwide network of server computers. The 
Linux operating system has become popular in servers.

• Laptop computers are portable computers whose size is small, but they have a normal-size keyboard and 
display.  

• Palmtop computers are small enough to be carried in a pocket. The display of a palmtop computer is 
small. Because they do not have a traditional keyboard, some palmtop computers are operated by using a 
special pen. Top models of modern mobile phones are like palmtop computers.

• Nanocomputers ... these are something that may exist in the future.

• Theoretical computers do not exist in reality. The imaginary computer that is presented in this chapter is 
an example of a theoretical computer, but there are many other theoretical computers. For example, in 
1937 Alan Turing published an article that presented a theoretical computer that was later named the Tur-
ing machine. The architecture of the Turing machine differs significantly from the architecture of the 
modern computers. Therefore, the Turing machine is not appropriate for educational purposes these days.

   These are sample pages from Kari Laitinen’s book
   A Natural Introduction to Computer Programming with C#.
   For more information, please visit http://www.naturalprogramming.com/
   © Copyright 2004-2005 Kari Laitinen. All rights reserved.
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4.5  The steps and states of program execution

Because the imaginary computer does not exist in reality, we must make some assump-
tions about how it would operate in reality. Since no computer can operate without a pro-
gram in its main memory, we must assume that a program can somehow be loaded to the
main memory of the imaginary computer. A program is always loaded so that the first
instruction is in the memory address 00H, and other instructions of the program are in the
subsequent memory addresses.

We assume also that there is an ON/OFF switch in the imaginary computer. When
there is a program loaded in the main memory, and the computer is switched on, it starts
executing the program according to the following steps:

STEP 1: Load value 00H to register PROGRAM POINTER, and value FFH to register
STACK POINTER. So at the beginning PROGRAM POINTER points to the
first location in the main memory, and STACK POINTER points to the last
memory location. Go to STEP 2.

STEP 2: Fetch the instruction code of a machine instruction from that memory address
which is stored in register PROGRAM POINTER. Store the instruction code
to register INSTRUCTION CODE. Increment the address in register PRO-
GRAM POINTER by one. Go to STEP 3.

STEP 3: If the content of register INSTRUCTION CODE is odd (i.e. if the instruction
is a two-byte instruction), fetch a byte from the memory address which is
stored in PROGRAM POINTER, store the byte to register INSTRUCTION
OPERAND, and increment the address in register PROGRAM POINTER by
one. Otherwise, if the content of INSTRUCTION code is even, do nothing.
Go to STEP 4.

STEP 4: If the content of register INSTRUCTION CODE is B2H (the code for instruc-
tion "stop processing"), go to STEP 6. Otherwise, go to STEP 5.

STEP 5: Interpret the instruction by using the instruction decoding table (Table 4-1)
and execute the actions required by that instruction. After all necessary
actions are performed, go to STEP 2.

STEP 6: Stop processing. Do nothing. The end of the program has been encountered.

The six steps above describe what the processor of the imaginary computer is doing
when it is running. What really happens is determined by the program that is stored in the
main memory. The processor repeats steps from 2 to 5 over and over, depending on how
many instructions and which instructions there are in the program.

A computer is a machine that can have different states while it is operating. Figure 4-
6 is a diagram which describes the operation of the imaginary computer as a machine
which changes states. The rounded rectangles in the figure are states in which certain
activities are carried out. After the activities of a state have been performed, it is possible
to make a transition to another state. The arrows describe transitions from one state to
another. The texts in brackets near some arrows mean conditions under which the transi-
tion can occur. For example, the transition from state FETCH INSTRUCTION CODE to
state FETCH INSTRUCTION OPERAND occurs only when the instruction code is odd.
The first state of the computer is RESET PROCESSOR, and that state is entered only
once. The final state of the computer is PROCESSOR STOPPED. That state is reached
when the instruction code is B2H.
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FETCH INSTRUCTION CODE:

Load register INSTRUCTION CODE from the address in regis-
ter PROGRAM POINTER.
Increment the address in register PROGRAM POINTER.

FETCH INSTRUCTION OPERAND:

Load register INSTRUCTION OPERAND from the address in 
register PROGRAM POINTER.
Increment the address in register PROGRAM POINTER.

EXECUTE INSTRUCTION:

The operations carried out in this state are specific to each 
instruction. The operations are explained in Table 4-1.

PROCESSOR STOPPED

RESET PROCESSOR:

 Load value 00H to register PROGRAM POINTER.
 Load value FFH to register STACK POINTER.

 [Computer is switched on.]

[Instruction
code is odd.]

[ Instruction code
is not B2H.]

[Instruction
code is B2H.]

Figure 4-6.  A state diagram that describes the operation of the imaginary computer.

[Instruction
code is even.]
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4.6  Programs to print text "Hello!"

Perhaps the best way to understand the operation of computers is to study and run pro-
grams made for them. Therefore, we now start studying complete computer programs
which are made for the imaginary computer. Our first example programs are machine-
level programs because they are made of the machine instructions. Machine-level pro-
grams consist of numerical codes which the processor interprets.

Figure 4-7a shows a simple program loaded into the main memory of our computer.
The program prints text "Hello!" to the screen of the imaginary computer. The program,
which is 13 bytes long, starts in the memory address 00H, and the last byte of the program
is in the address 12H. The program uses only three different machine instructions:

• Instruction 15H, "load register A with value", is used six times to load the character
codes of different characters to register A. Instruction 15H is a two-byte instruc-
tion. The byte that follows the instruction in the program is an operand byte. (Re-
member that two-byte instructions have odd instruction codes!)

• Instruction 92H, "output byte from register A", is used six times to print each char-
acter to the screen.

• Instruction B2H, "stop processing", is used once at the end of the program to stop
the imaginary processor.

Figure 4-7b describes the execution of the program in Figure 4-7a. The values of all
registers of the imaginary processor are shown after all processor operations in Figure 4-
7a. Most registers have value FFH when the computer starts operating. Registers are
marked so that PP means PROGRAM POINTER, IC means INSTRUCTION CODE reg-
ister, IO means INSTRUCTION OPERAND, RA means register A, etc. FE and FF mean
the last two memory locations in the main memory. All numbers in both figures are hexa-
decimal numbers without the H at the end.

Figure 4-7a.  A machine-level program that prints text "Hello!"

Address   Program    Explanation

00        15         "load register A with value"
01        48         character code of letter ’H’
02        92         "output byte from register A"
03        15         "load register A with value"
04        65         character code of letter ’e’
05        92         "output byte from register A"
06        15         "load register A with value"
07        6c         'l'
08        92         "output byte from register A"
09        15         "load register A with value"
0a        6c         'l'
0b        92         "output byte from register A"
0c        15         "load register A with value"
0d        6f         'o'
0e        92         "output byte from register A"
0f        15         "load register A with value"
10        21         '!'
11        92         "output byte from register A"
12        b2         "stop processing"



4.6 Programs to print text "Hello!" 67

Figure 4-7b.  Step-by-step execution of the program in Figure 4-7a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  15  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  15  48  ff  ff  ff  ff  ff  ff   
EXECUTE 02  15  48  48  ff  ff  ff  ff  ff   
FETCH   03  92  48  48  ff  ff  ff  ff  ff   
EXECUTE 03  92  48  48  ff  ff  ff  ff  ff   H
FETCH   04  15  48  48  ff  ff  ff  ff  ff   H
FETCH   05  15  65  48  ff  ff  ff  ff  ff   H
EXECUTE 05  15  65  65  ff  ff  ff  ff  ff   H
FETCH   06  92  65  65  ff  ff  ff  ff  ff   H
EXECUTE 06  92  65  65  ff  ff  ff  ff  ff   He
FETCH   07  15  65  65  ff  ff  ff  ff  ff   He
FETCH   08  15  6c  65  ff  ff  ff  ff  ff   He
EXECUTE 08  15  6c  6c  ff  ff  ff  ff  ff   He
FETCH   09  92  6c  6c  ff  ff  ff  ff  ff   He
EXECUTE 09  92  6c  6c  ff  ff  ff  ff  ff   Hel
FETCH   0a  15  6c  6c  ff  ff  ff  ff  ff   Hel
FETCH   0b  15  6c  6c  ff  ff  ff  ff  ff   Hel
EXECUTE 0b  15  6c  6c  ff  ff  ff  ff  ff   Hel
FETCH   0c  92  6c  6c  ff  ff  ff  ff  ff   Hel
EXECUTE 0c  92  6c  6c  ff  ff  ff  ff  ff   Hell
FETCH   0d  15  6c  6c  ff  ff  ff  ff  ff   Hell
FETCH   0e  15  6f  6c  ff  ff  ff  ff  ff   Hell
EXECUTE 0e  15  6f  6f  ff  ff  ff  ff  ff   Hell
FETCH   0f  92  6f  6f  ff  ff  ff  ff  ff   Hell
EXECUTE 0f  92  6f  6f  ff  ff  ff  ff  ff   Hello
FETCH   10  15  6f  6f  ff  ff  ff  ff  ff   Hello
FETCH   11  15  21  6f  ff  ff  ff  ff  ff   Hello
EXECUTE 11  15  21  21  ff  ff  ff  ff  ff   Hello
FETCH   12  92  21  21  ff  ff  ff  ff  ff   Hello
EXECUTE 12  92  21  21  ff  ff  ff  ff  ff   Hello!
FETCH   13  b2  21  21  ff  ff  ff  ff  ff   Hello!
STOP    13  b2  21  21  ff  ff  ff  ff  ff   Hello!

The first status of the processor is always RESET. Here 
the processor performs two fetch operations because the first 
machine instruction, 15H, "load register A with value", is a 
two-byte instruction. After the last fetch operation, register 
INSTRUCTION OPERAND (IO) contains value 48H which 
is the character code of uppercase letter H.

At the beginning, the screen of 
the computer is empty. Text 
"Hello!" emerges gradually on the 
screen, character by character, as 
the program execution proceeds.

This line shows the situation after the instruction 15H has been executed. The 
execution resulted in the value 21H, the character code of exclamation mark !, 
being copied from register INSTRUCTION OPERAND (IO) to register A (RA). 
Register PROGRAM POINTER (PP) already points to the address of the next 
instruction in the program.
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I advise you to study Figure 4-7b very carefully. You should read all the lines which
show the values of the registers, and note changes in the values. It may be useful to re-read
the processing steps which were discussed in the previous section. You should also read
Table 4-1 to find out how the used machine instructions should work. If you can under-
stand what is said in Figure 4-7b, you have learned the basics about the operation of the
imaginary computer.

Usually there are several possibilities to construct a computer program that performs
a certain activity. The program in Figure 4-7a is one way to print text "Hello!" to the
screen. In Figure 4-8a, there is another program that prints the text "Hello!" to the screen
of the imaginary computer. The program in Figure 4-7a is rather simple because the two
instructions "load register A with value" and "output byte from register A" are repeated six
times in it. The program in Figure 4-8a is constructed in such a way that necessary instruc-
tions are repeated six times although they exist only once in the program.

In the program in Figure 4-8a, the characters of the text "Hello!" are separated from
the actual program. The character codes of the characters are in different memory area
than the machine instructions. The last machine instruction is in address 09H, and the first
character of the text is in address 0AH. The character codes are in the order in which they
should be printed, and 00H, the NULL character, marks the end of the text to be printed.

The program in Figure 4-8a uses the following instructions not used in the program
in Figure 4-7a:

• With instruction 21H, "set memory pointer", register MEMORY POINTER is set
to point to address 0AH which is the beginning of text "Hello!" in the main memo-
ry.

• Instruction 28H, "load register A from memory" is used to read the characters of
the text "Hello!" from the main memory. The value of  MEMORY POINTER spec-
ifies which memory location is read by instruction "load register A from memory".
Since MEMORY POINTER points to address 0AH at the beginning, the character
code of letter H is the first value that is loaded to register A.

• Instruction 22H, "increment memory pointer", adds 1 to the value of MEMORY
POINTER. This ensures that instruction "load register A from memory" loads dif-
ferent character codes from the main memory when the program is executed.

Figure 4-8a.  Another program that prints text "Hello!"

Address   Program    Explanation

00        21         "set memory pointer"
01        0a         value to register MEMORY POINTER
02        28         "load register A from memory"
03        45         "jump if register A zero"
04        09         address for possible jump
05        92         "output byte from register A"
06        22         "increment memory pointer "
07        41         "jump to address"
08        02         address for unconditional jump
09        b2         "stop processing"
0a        48         'H'
0b        65         'e'
0c        6c         'l'
0d        6c         'l'
0e        6f         'o'
0f        21         '!'
10        00         NULL  (zero)
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Figure 4-8b.  Step-by-step execution of the program in Figure 4-8a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  21  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  21  0a  ff  ff  ff  ff  ff  ff   
EXECUTE 02  21  0a  ff  ff  0a  ff  ff  ff   
FETCH   03  28  0a  ff  ff  0a  ff  ff  ff   
EXECUTE 03  28  0a  48  ff  0a  ff  ff  ff   
FETCH   04  45  0a  48  ff  0a  ff  ff  ff   
FETCH   05  45  09  48  ff  0a  ff  ff  ff   
EXECUTE 05  45  09  48  ff  0a  ff  ff  ff   
FETCH   06  92  09  48  ff  0a  ff  ff  ff   
EXECUTE 06  92  09  48  ff  0a  ff  ff  ff   H
FETCH   07  22  09  48  ff  0a  ff  ff  ff   H
EXECUTE 07  22  09  48  ff  0b  ff  ff  ff   H
FETCH   08  41  09  48  ff  0b  ff  ff  ff   H
FETCH   09  41  02  48  ff  0b  ff  ff  ff   H
EXECUTE 02  41  02  48  ff  0b  ff  ff  ff   H
FETCH   03  28  02  48  ff  0b  ff  ff  ff   H
EXECUTE 03  28  02  65  ff  0b  ff  ff  ff   H
FETCH   04  45  02  65  ff  0b  ff  ff  ff   H
FETCH   05  45  09  65  ff  0b  ff  ff  ff   H
EXECUTE 05  45  09  65  ff  0b  ff  ff  ff   H
FETCH   06  92  09  65  ff  0b  ff  ff  ff   H
EXECUTE 06  92  09  65  ff  0b  ff  ff  ff   He
FETCH   07  22  09  65  ff  0b  ff  ff  ff   He
EXECUTE 07  22  09  65  ff  0c  ff  ff  ff   He
FETCH   08  41  09  65  ff  0c  ff  ff  ff   He
FETCH   09  41  02  65  ff  0c  ff  ff  ff   He
EXECUTE 02  41  02  65  ff  0c  ff  ff  ff   He
FETCH   03  28  02  65  ff  0c  ff  ff  ff   He
EXECUTE 03  28  02  6c  ff  0c  ff  ff  ff   He
FETCH   04  45  02  6c  ff  0c  ff  ff  ff   He
FETCH   05  45  09  6c  ff  0c  ff  ff  ff   He
EXECUTE 05  45  09  6c  ff  0c  ff  ff  ff   He
FETCH   06  92  09  6c  ff  0c  ff  ff  ff   He
EXECUTE 06  92  09  6c  ff  0c  ff  ff  ff   Hel

    Not all lines are printed here because of space limitations.

FETCH   06  92  09  21  ff  0f  ff  ff  ff   Hello
EXECUTE 06  92  09  21  ff  0f  ff  ff  ff   Hello!
FETCH   07  22  09  21  ff  0f  ff  ff  ff   Hello!
EXECUTE 07  22  09  21  ff  10  ff  ff  ff   Hello!
FETCH   08  41  09  21  ff  10  ff  ff  ff   Hello!
FETCH   09  41  02  21  ff  10  ff  ff  ff   Hello!
EXECUTE 02  41  02  21  ff  10  ff  ff  ff   Hello!
FETCH   03  28  02  21  ff  10  ff  ff  ff   Hello!
EXECUTE 03  28  02  00  ff  10  ff  ff  ff   Hello!
FETCH   04  45  02  00  ff  10  ff  ff  ff   Hello!
FETCH   05  45  09  00  ff  10  ff  ff  ff   Hello!
EXECUTE 09  45  09  00  ff  10  ff  ff  ff   Hello!
FETCH   0a  b2  09  00  ff  10  ff  ff  ff   Hello!
STOP    0a  b2  09  00  ff  10  ff  ff  ff   Hello!

Here instruction 
41H, "jump to 
address", is executed. 
The execution modi-
fies the content of reg-
ister PROGRAM 
POINTER so that the 
next instruction to be 
executed is in address 
02H.

Execution of 
instruction 45H, 
"jump if register A 
zero", results in a 
jump only when regis-
ter A contains value 
00H.
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• Instruction 45H, "jump if register A zero", is a so-called conditional jump. The ex-
ecution of the program jumps to address 09H if the content of register A is zero. If
the content of register A is not zero, the program execution continues from the in-
struction that follows "jump if register A zero". Instruction "jump if register A ze-
ro" causes a jump in the program when all characters of text "Hello!" have been
displayed on the screen. Because there is a zero at the end of the text, register A be-
comes zero and a jump to address 09H takes place. Because address 09H contains
the instruction "stop processing", the program terminates.

• Instruction 41H, "jump to address", is an unconditional jump which causes a jump
to address 02H in the program. With this instruction, the program prepares to read
and display the next character of text "Hello!".

The execution of the program in Figure 4-8a is described in Figure 4-8b. Again, it is
very important that you study carefully how the values in the registers of the imaginary
computer change while the program is being executed. While you study Figure 4-8b, you
should note the following points:

• During the FETCH operations, when the processor is reading instructions and their
operands from the main memory, the values of registers A (RA), B (RB), MEMO-
RY POINTER (MP), and STACK POINTER (SP) do not change, but the value of
register PROGRAM POINTER (PP) grows after every FETCH operation.

• Values of registers INSTRUCTION CODE (IC) and INSTRUCTION OPERAND
(IO) do not change during EXECUTE operations.

• When the processor reads an instruction which has an odd instruction code, it per-
forms another FETCH operation that reads an operand for the instruction. After the
second FETCH operation, register INSTRUCTION OPERAND (IO) has a new
value. The imaginary computer is designed in such a way that two-byte instruc-
tions have odd instruction codes and single-byte instructions have even instruction
codes.

Exercises related to machine-level programming
Exercise 4-2. Study the program in Figure 4-7a. Which instruction can be taken away from the program with-

out affecting the output of the program? The program should still print "Hello!" if the instruc-
tion were removed from the program.

Exercise 4-3. Modify one (and only one) byte in the program of Figure 4-8a so that the program prints 
"Hello" instead of "Hello!".

Exercise 4-4. Modify one (and only one) byte in the program of Figure 4-8a so that the program prints "ello!" 
instead of "Hello!".
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4.7  Programming language IML and compilation

Now we have seen that executable computer programs are sequences of numerical
machine instructions. By putting the right machine instructions into a program, it is possi-
ble to make a computer behave in a certain manner. But it is quite difficult to construct a
program if you only have the numerical machine instructions in your mind. It is also hard
to read the computer programs which are made of numerical machine instructions. For
these reasons, different kinds of textual programming languages have been invented. Tex-
tual programming languages allow us to write computer programs in text form. Textual
programming languages are defined in such a way that the numerical machine codes can
be generated automatically in a process that is called compilation.

Here we will define and study a simple textual programming language for the imagi-
nary computer. The name of the simple language is IML, an abbreviation of "Imaginary
Computer’s Machine-Level Language". IML is a machine-level language because you still
have to think about the registers of the imaginary processor when you are writing pro-
grams with it. But when you use IML, you do not have to remember the numerical
machine instructions, and the programs become readable. IML is presented here just to
show you some principles of programming languages. IML helps you also to understand
what happens in the compilation of computer programs. The purpose is not that you will
become an expert in IML programming. You may forget most of IML after you have read
this chapter and understood how the programs work. Languages like IML should not be
used if there are languages like C# available. When you write programs with a high-level
programming language like C#, programming is easier, because you do not have to think
about the registers of the processor that is being used.

The following is the program of Figure 4-7a written with the IML programming lan-
guage:

//  hello.iml  (c) 1999-2001 Kari Laitinen

//  A program that prints the text "Hello!" on the screen.

      load_register_a_with_value    'H'
      output_byte_from_register_a
      load_register_a_with_value    'e'
      output_byte_from_register_a
      load_register_a_with_value    'l'
      output_byte_from_register_a
      load_register_a_with_value    'l'
      output_byte_from_register_a
      load_register_a_with_value    'o'
      output_byte_from_register_a
      load_register_a_with_value    '!'
      output_byte_from_register_a
      stop_processing

This program is largely made of the explanations which are present in Figure 4-7a. The
numerical instruction codes of the imaginary processor are represented by textual instruc-
tions in an IML program. As IML is a programming language, it is possible to make a
compiler which can translate an IML program from the textual form to numerical form.
An IML compiler would process the above program according to the following rules:

• A program is translated line by line, from the beginning to the end.

• All  empty lines, lines that contain no text, are omitted.

• All lines starting with character pair // are omitted. Lines starting with // are com-
ment lines which do not belong to the actual program.
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• All other lines are translated to machine instructions:

load_register_a_with_value    ’H’   translates to  15H  48H
load_register_a_with_value    ’e’   translates to  15H  65H
load_register_a_with_value    ’l’   translates to  15H  6CH

                           etc.
output_byte_from_register_a         translates to  92H
stop_processing                     translates to  B2H

Textual IML instructions like

load_register_a_with_value
add_register_b_to_a

correspond to the numerical instruction codes of the imaginary processor. You can think
that the textual IML instructions are names invented for the numerical instructions. The
textual instructions are formed of the phrases which can be found in the second column of
Table 4-1. The words of the phrases must be concatenated with underscores so that an
IML compiler can interpret them as whole textual entities. An IML compiler translates
each textual instruction to a numerical instruction code, and, if the instruction uses an
operand, adds an operand byte after the instruction code. Table 4-2 lists all textual instruc-
tions together with the corresponding numerical instruction codes. If an instruction needs
a value or a memory address as an operand, there is VVH or MMH on the instruction’s
line in Table 4-2. The table also shows which registers of the imaginary processor are
modified when the instructions are executed. To compile an IML source program, an IML
compiler must have an internal instruction translation table that resembles Table 4-2 and
describes which textual instruction corresponds to which numerical instruction.

Because many of the instructions of the imaginary processor need an operand byte,
there have to be special notations in the IML programming language to present the oper-
and bytes. When numerical constants are needed as operands in IML programs, they can
be expressed in the following ways:

’H’ means 48H, the character code of uppercase letter H
’a’ means 61H, the character code of lowercase letter a
’ ’ means 20H, the character code of the space character
’\n’ means 0AH, the character code of the newline character
’n’ means 6EH, the character code of lowercase letter n
123 means 7BH, the decimal number 123
0x22 means 22H, the decimal number 34
0x1F means 1FH, the decimal number 31

So if you need a character code of a letter in an IML program, you do not have to remem-
ber the character code. You can write the letter inside single quote characters, and let the
IML compiler translate it to the correct character code. If you need a number in your pro-
gram, you can write it as a normal decimal number. In the case that you want to write a
number in hexadecimal form you must put the prefix 0x before the hexadecimal digits.
Because there are several ways to express operand values in an IML program, there are
many possibilities to write IML program lines. For example, as the character code of letter
A is 65 as a decimal number and 41H as a hexadecimal number, the following three IML
program lines mean the same

load_register_a_with_value       ’A’
load_register_a_with_value       65
load_register_a_with_value       0x41
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Table 4-2: IML instruction translation table. 

 TEXTUAL INSTRUCTION CODE  OPERAND

REGISTERS WRITTEN

RA  RB  PP  MP  SP  Memory

 add_value_to_register_a

 add_register_b_to_a

 subtract_value_from_register_a

 subtract_register_b_from_a

 load_register_a_with_value

 increment_register_a

 load_register_b_with_value

 increment_register_b 

 decrement_register_a

 decrement_register_b

 move_content_of_register_a_to_b

 set_memory_pointer

 increment_memory_pointer

 decrement_memory_pointer

 store_register_a_to_memory

 load_register_a_from_memory

 store_register_b_to_memory

 load_register_b_from_memory

 jump_to_address

 jump_if_registers_equal

 jump_if_register_a_zero

 jump_if_register_a_smaller_than_b

 jump_if_register_a_greater_than_b

 jump_if_input_not_ready

 call_subroutine

 return_to_calling_program

 output_byte_from_register_a

 output_byte_from_register_b

 input_byte_to_register_a

 set_stack_pointer

 push_register_a_to_stack

 pop_register_a_from_stack

 stop_processing

11H    VVH

12H

13H    VVH

14H

15H    VVH

16H

17H    VVH

18H

1AH

1CH

1EH

21H    MMH

22H

24H

26H

28H

2AH

2CH

41H    MMH

43H    MMH

45H    MMH

47H    MMH

49H    MMH

4BH    MMH

81H    MMH

82H

92H

94H

96H

A1H    MMH

A2H

A4H

B2H

x

x

x

x

x

x

    x

    x

x

    x

    x

            x

            x

            x

                    x

x

                    x

    x

        x

        ?a

        ?

        ?

        ?

        ?

        x       x   x

        x       x

x

                x

                x   x

x               x

a. The question mark ? means that the register is possibly written. The conditional jump instructions write register
PROGRAM POINTER only when certain conditions exist.
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Most instructions for the imaginary processor are plain instructions which do not
need any operands, some instructions take numerical values as operands, and some
instructions must be given memory addresses as operands. The memory addresses are
numerical values, but they are different kinds of numerical values than, for example, char-
acter codes. In the program of Figure 4-8a, memory addresses are needed by instructions
which cause jumps in the program, and the memory address of the text "Hello!" needs to
be stored to MEMORY POINTER at the beginning of the program.

In the IML programming language, memory addresses are described with address
names which have to be invented by the program author. When memory addresses are cor-
rectly described with names, an IML compiler can find correct numerical values for the
memory addresses. This helps a lot when programs must be created for the imaginary
computer.

Figure 4-8c shows what the program of Figure 4-8a looks like when it is written with
the IML programming language, and translated to machine instructions with an IML com-
piler. There are four address names in the program. The compiler has found numerical val-
ues for the address names in the following way:

ADDRESS NAME                  NUMERICAL ADDRESS

beginning_of_program          00H
display_characters            02H
end_of_program                09H
address_of_text               0AH

The address names refer to memory locations in the program. For example, the name
address_of_text refers to the memory address of the first letter of  the text "Hello!",
the name display_characters refers to the address where instruction load_-
register_a_from_memory is, and the name end_of_program refers to the address
where the instruction stop_processing is located. An address name must be written
before the instruction whose address is referred to by the name. The colon character : must
be written after an address name in that place where it specifies a memory location.

When an IML compiler processes an IML source program, it first finds all address
names which are followed by the colon character (;). Then the compiler counts how many
instructions and what kinds of instructions precede each address name in the program.
That way the compiler is able to find numerical values for the address names. In the pro-
gram in Figure 4-8c, address name display_characters is given the value 02H
because it is preceded by a single two-byte instruction in the program. Address name
end_of_program is given the value 09H because its position in the program is such that
it is preceded by three single-byte instructions and three two-byte instructions which
occupy addresses 00H, 01H, ..., and 08H.

After the IML compiler has found numerical values for the address names, it is able
to translate those instructions which use an address name as an operand. For example,
when the compiler has found out that the name end_of_program refers to address 09H
in the program of Figure 4-8c, it is able to make the following translation

jump_if_register_a_zero   end_of_program     -->   45H  09H

The compiler has an internal instruction translation table from which it can find out that
the textual instruction jump_if_register_a_zero must be translated with the numeri-
cal code 45H, and the address value 09H it has calculated by itself.

As IML is a programming language for which it is possible to build a compiler, it is
possible to write a program which does not compile because some rules of the IML lan-
guage are violated in the program. For example, if the above instruction were written like

jump_if_register_aaa_zero   end_of_program

an IML compiler could not compile the instruction because it could not find the textual
instruction jump_if_register_aaa_zero in its internal instruction translation table.
Similarly, the instruction
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jump_if_register_a_zero   end_of_programmm

would result in a compilation error because the compiler could not find the address name
end_of_programmm in its internal table of address names. It is important that a name in a
computer program is always written in exactly the same way. This is equally important
both in IML programs and in C# programs.

The text "Hello!" is defined 

address_of_text:        STRING       "Hello!"

in the program in Figure 4-8c. When an IML compiler recognizes this definition, it puts
the character codes of characters H, e, l, l, o, and ! to those memory locations where the
declaration is. In addition to the character codes of the characters, the compiler inserts
00H, a zero, after the last character. Thus the above line is translated to codes 48H, 65H,
6CH, 6CH, 6FH, 21H, and 00H in memory addresses from 0AH to 10H in Figure 4-8c.

Figure 4-8c.  The program of Figure 4-8a written with IML and translated to machine instructions.

//  hello_loop.iml  (c) 1997 - 2000 Kari Laitinen

//  This program prints the characters of text "Hello!"
//  in a loop. The text is defined with the keyword STRING
//  at the end of the program. As the IML compiler puts a
//  zero at the end of the string, the program knows when
//  to stop printing characters.

beginning_of_program:
      set_memory_pointer             address_of_text

display_characters:
      load_register_a_from_memory
      jump_if_register_a_zero        end_of_program
      output_byte_from_register_a
      increment_memory_pointer
      jump_to_address                display_characters

end_of_program:
      stop_processing

address_of_text:        STRING       "Hello!"

00    21  0A 

 
02    28  
03    45  09
05    92 
06    22 
07    41  02

    
09    B2

0A    48
0B    65
0C    6C
0D    6C
0E    6F
0F    21
10    00

This is the compiled version of the program. 
All numbers are hexadecimal without the letter H 
at the end. Memory addresses are shown on the left 
and generated numerical codes are on the right.
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The word STRING is a reserved keyword in the IML programming language. This
means that the word STRING cannot be used as an address name in an IML program.
STRING is reserved for situations when textual strings need to be defined (or declared).
The characters of the textual string must be given inside double quote characters "". An
IML compiler automatically converts the characters of the textual string to character codes
and adds a NULL character, a zero, to the end of the visible characters. When there is a
NULL character, 00H, at the end of the visible characters, a program can easily recognize
where the text ends, and, for example, stop printing the text. Because a textual string can
be defined this way in an IML program, it is very easy to make the program of Figure 4-8c
print other texts. For example, if the last line of the textual program were changed to

address_of_text:       STRING      "How are you doing?"

the program would print

How are you doing?

if it were compiled with an IML compiler and executed in the imaginary computer.
In addition to word STRING there are two other similar reserved keywords in the

IML language. These words are DATA and CONSTANT. If you write in an IML program

result_of_calculation:   DATA       2

you reserve two bytes from the main memory and the address name result_of_-
calculation refers to the address of the first reserved byte. By using a larger number in
place of 2, it is possible to reserve larger areas from the main memory.

With the reserved keyword CONSTANT it is possible to reserve a single byte from
the main memory, and initialize the reserved memory location with a certain numerical
value. For example, the definition

number_of_states_in_usa:   CONSTANT   50

would reserve one byte of memory and store the value 50 in that memory location. By
using the address name number_of_states_in_usa, it would be possible to refer to the
reserved memory location. The definition

year_of_french_revolution:  CONSTANT  1789

would be incorrect in the case of IML and the imaginary computer because numbers larger
than 255 cannot be stored in a single byte. It is true, though, that a historical revolution
started in France in 1789.

In the example definitions above, all reserved memory locations are given an address
name with which they can be referred to. It is common in computer programming that the
program writer must invent and write various names in programs. The program writer
must follow the rules of the programming language when he or she invents the names. In
IML, the names must consist of letters and underscore characters. There may not be any
space characters in a name,  and a name may not be STRING, DATA, CONSTANT, or any
of the textual instructions in the first column of Table 4-2.
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How do real computers differ from the imaginary computer?

The imaginary computer is an 8-bit computer with only 256 bytes of main memory. Although this kind of a com-
puter operates, and can be programmed, like a real computer, computers like the imaginary computer are not used 
in the real world. There can be 8-bit processors in use in some special applications, but no modern computer works 
with a small 256-byte main memory. If we, for example, compare the imaginary computer to a personal computer, 
we can find the following essential differences:

• The processors which are used in personal computers are usually 32-bit processors in which all internal 
registers can hold 32-bit values. The registers of the imaginary processor are all 8-bit registers.

• The processors of personal computers have more machine instructions than our imaginary processor. The 
machine instructions are more complicated, they can perform a wide range of operations, and they can 
operate with many general-purpose registers. The imaginary processor has only a simple set of machine 
instructions with which some basic computing activities can be performed.

• The main memory of a personal computer can be a million times larger than the main memory of the 
imaginary computer. Personal computers use auxiliary memory devices in addition to the main memory. 
The imaginary computer works only with its small main memory.

• Various peripheral equipment such as modems, printers, scanners, cameras, etc. can be connected to per-
sonal computers. The imaginary computer has only two ports to which a screen and a keyboard are con-
nected.

• In a personal computer there is always an operating system, a program which can control the execution of 
other programs. In the imaginary computer programs are loaded to the main memory with some imagina-
tion, and they are executed by switching the computer on.

Compiler for IML?

You may be wondering why I do not provide a compiler for the IML language. The truth is that I do have a rudi-
mentary compiler for the language, but I’m afraid that it does not work well enough to be distributed for wider use. 
Compilers are extremely complicated computer programs, and it is not easy to make a reliable compiler even for 
such a simple language like IML. The existing compiler inputs an IML source program file and produces another 
file which contains the machine instructions of the program. For example, when the file hello_loop.iml is com-
piled, a file named hello_loop.ice is produced. Files ending with .ice can be loaded to the ICOM simulator. (Simu-
lators for the imaginary computer will be discussed in the following section.) The file name extension .ice means 
"imaginary computer executable". There are some .ice files available among the electronic material of this book, 
but the same programs can be found built in the simulators.

Another reason for not providing an IML compiler is that IML is just a language for educational purposes. It 
is not necessary to write more IML programs than those that are presented in this book and built in the IC8 and 
ICOM simulators. You should start learning C# and compiling C# programs as soon as you have learned the basics 
of computer technology in this chapter.
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4.8  IC8 and ICOM – simulator programs for the imaginary computer

Although the imaginary computer described in this chapter does not exist as a computer
built of hardware components, there are two programs which simulate the imaginary com-
puter on a personal computer. The older one of the simulator programs is called ICOM,
and you can find information about it if you read the sample pages of Chapter 4 of my
C++ book. You can find those pages via the Internet address www.naturalprogram-
ming.com. The ICOM simulator runs in a command prompt window, and you can com-
mand it only with the keyboard of your computer. It does not recognize mouse commands.
If you decide to use the ICOM simulator, please read the help pages that are built in it.

A better simulation program1 for the imaginary computer is called IC8. This pro-
gram is a so-called Java applet that can be executed on an Internet page. To use the IC8
simulator, you must go with your Internet browser (e.g. Internet Explorer) to a certain
page on the Internet. That page can be reached through the address www.naturalprogram-
ming.com. In order to run the simulator, the settings of your Internet browser must be such
that Java applets can be executed. (I’ll put some information about the browser settings on
the Internet pages.)

When you have found the page on which the IC8 simulator is located, and the execu-
tion of Java applets is enabled in your browser, the browser should display a view like the
one that is shown in Figure 4-9. The IC8 simulator is a program which you can control by
using the mouse to press its buttons. The most important rule in the use of the simulator is
that you must first load a program into its main memory with the Load Program button,
and only after that can you actually start using the simulator. Some of the buttons of the
simulator are explained in Figure 4-9. The rest of the buttons have the following effects

• The Reset button loads value 00H to register PROGRAM POINTER and value
FFH to all other important processor registers. The INPUT READY signal is set to
0. The screen is cleared, but the contents of the main memory are not modified.

• By pressing the Translate button, you can see a kind of textual form of the pro-
gram in the main memory. Repressing the button brings back the normal view.

• With the Modify button you can put the simulator to a mode in which you can
modify the contents of the main memory. After the Modify button has been
pressed, you can click on memory locations with the mouse and enter new values
to the selected locations through the keyboard. You must repress the Modify button
to get back to the normal simulation mode.

• By selecting one of the buttons HEX, BIN, or DEC, you can choose the number-
ing system in which numbers are shown.

While you are using the IC8 simulator program, you should remember that it is a
program that has not been widely tested, and there may be errors in it. Although I do not
know about any serious errors in IC8, I cannot guarantee that it operates correctly. And
most importantly, I shall not assume any kind of responsibility for any kind of damages
the IC8 simulator (or the ICOM simulator) causes while you are using it. Because IC8 is
an applet, not a real application, it should not cause any serious troubles on your computer.
If it seems that the program is not operating properly, a wise thing to do is to first close
your browser, restart the browser, and then go back to the page of the simulator.

Using the IC8 simulator, or the ICOM simulator, helps you to understand how com-
puters operate. Of course, if you feel that you understand the example IML programs of
this chapter by just studying them on paper, it is not necessary to use any simulator pro-
grams. The programs are in any case an easy way to verify the answers which you got for
the exercises in this chapter. 

1. The word "simulation" is common in the world of computers. It means that a computer program imitates a real-life 
phenomenon or something that could exist in reality.
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Figure 4-9.  The screen of the IC8 simulator after the program hello.iml has been executed.

By pressing the Load Program button, you can load 
an executable program into the main memory of the 
imaginary computer. There are many compiled ready-
to-run executable programs built in the simulation pro-
gram. All the example programs of this chapter are 
there for you to try. After this button is pressed, you’ll 
see a menu from which you can select a program when 
you know the file names of the IML programs. For 
example, if you want to run the program of Figure 4-
8c in the simulator, you can easily load the correct pro-
gram because the file name hello_loop.iml is men-
tioned in Figure 4-8c.

After a program has been loaded with 
the Load Program button, it can be 
executed by pressing the Execute but-
ton. The Execute button transforms to 
Pause button with which you can stop 
the execution temporarily. When the 
program is stopped, this button is the 
Continue button with which you can 
resume program execution. The execu-
tion speed of the simulator can be 
altered with the Slower and Faster but-
tons.

Here, the simulator shows the first 31 locations of the main memory. The machine 
instructions of program hello.iml are loaded into the memory. An important feature 
of this simulator is that if you click with the mouse on an instruction in a memory 
location, when the simulator is executing a program, the execution goes with maxi-
mum speed until the clicked instruction, and continues then with the normal, 
selected speed.

Exercise with the IC8 simulator program
Exercise 4-5. Verify your answers to exercises 4-3 and 4-4 by using the IC8 simulator program. Use the Load 

Program button to load program hello_loop.iml to the simulator, and then modify the program 
by pressing the Modify button. Finally you must execute it to see how it works.
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4.9  A program that contains a loop

In principle, programs are executed so that those instructions which are at the beginning of
a program are executed first, and the program execution proceeds instruction by instruc-
tion towards the end of the program. By using jump instructions it is possible to violate
this principle. A jump instruction can cause a jump from the end of a program to the
beginning of the program. We say that jump instructions can create a loop in a program.
Loops are sequences of instructions which are repeated many times during the execution
of a program. In program hello_loop.iml in Figure 4-8c we have already seen a loop
which prints the characters of the text "Hello!". Another program in which a loop is used
to print characters is abcde.iml in Figure 4-10a.

Only the textual IML instructions are shown for the program in Figure 4-10a. For
you to learn how the program operates, it might be useful to write the numerical instruc-
tions by hand besides the textual instructions. You could thus compile the program manu-
ally. Figure 4-10b shows what happens on the screen and in the registers of the imaginary
processor when the program is being executed. Figure 4-10b can help you to hand-com-
pile the program. You can also exploit tables 4-1 and 4-2.

A key idea in program abcde.iml is that it prints letters A, B, C, D, and E because the
character codes of these letters are sequential numbers 41H, 42H, 43H, 44H, and 45H.
First the program loads the character code of letter A, 41H, to register B. When register B
is incremented inside the loop of the program, it first increments to 42H, then to 43H, then
to 44H, then to 45H, and finally to 46H. Value 46H is never printed. The other general
purpose register of the processor, register A, is used to count how many letters are left to
be printed to the screen. Register A is 5 at the beginning. As it is decremented inside the
loop, it first decrements to 4, then to 3, then to 2, then to 1, and finally to 0. When register
A reaches value 0, a jump to address name end_of_program takes place, and the pro-
gram terminates.

Figure 4-10a.  A program that prints letters ABCDE in a loop.

//  abcde.iml   (c) 1998-2000 Kari Laitinen

//  This program prints the letters ABCDE to the screen.
//  Register A is used to count how many characters have
//  been printed. The character code being output to the
//  screen is held in register B. The first code is 'A'
//  which means 41H, the character code of letter A.
//  As the character code in register B is incremented
//  after each printing, a different letter will be
//  printed each time.

beginning_of_program:
      load_register_a_with_value       5
      load_register_b_with_value       'A'

print_next_letter:
      output_byte_from_register_b
      increment_register_b
      decrement_register_a
      jump_if_register_a_zero          end_of_program
      jump_to_address                  print_next_letter

end_of_program:
      stop_processing

Two jump instructions 
are usually needed to con-
struct a loop. Here the first 
jump instruction terminates 
the loop at the right 
moment. The second jump 
instruction continues the 
loop.
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Figure 4-10b.  Step-by-step execution of the program in Figure 4-10a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  15  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  15  05  ff  ff  ff  ff  ff  ff   
EXECUTE 02  15  05  05  ff  ff  ff  ff  ff   
FETCH   03  17  05  05  ff  ff  ff  ff  ff   
FETCH   04  17  41  05  ff  ff  ff  ff  ff   
EXECUTE 04  17  41  05  41  ff  ff  ff  ff   
FETCH   05  94  41  05  41  ff  ff  ff  ff   
EXECUTE 05  94  41  05  41  ff  ff  ff  ff   A
FETCH   06  18  41  05  41  ff  ff  ff  ff   A
EXECUTE 06  18  41  05  42  ff  ff  ff  ff   A
FETCH   07  1a  41  05  42  ff  ff  ff  ff   A
EXECUTE 07  1a  41  04  42  ff  ff  ff  ff   A
FETCH   08  45  41  04  42  ff  ff  ff  ff   A
FETCH   09  45  0b  04  42  ff  ff  ff  ff   A
EXECUTE 09  45  0b  04  42  ff  ff  ff  ff   A
FETCH   0a  41  0b  04  42  ff  ff  ff  ff   A
FETCH   0b  41  04  04  42  ff  ff  ff  ff   A
EXECUTE 04  41  04  04  42  ff  ff  ff  ff   A
FETCH   05  94  04  04  42  ff  ff  ff  ff   A
EXECUTE 05  94  04  04  42  ff  ff  ff  ff   AB
FETCH   06  18  04  04  42  ff  ff  ff  ff   AB
EXECUTE 06  18  04  04  43  ff  ff  ff  ff   AB
FETCH   07  1a  04  04  43  ff  ff  ff  ff   AB
EXECUTE 07  1a  04  03  43  ff  ff  ff  ff   AB
FETCH   08  45  04  03  43  ff  ff  ff  ff   AB
FETCH   09  45  0b  03  43  ff  ff  ff  ff   AB
EXECUTE 09  45  0b  03  43  ff  ff  ff  ff   AB
FETCH   0a  41  0b  03  43  ff  ff  ff  ff   AB
FETCH   0b  41  04  03  43  ff  ff  ff  ff   AB
EXECUTE 04  41  04  03  43  ff  ff  ff  ff   AB
FETCH   05  94  04  03  43  ff  ff  ff  ff   AB
EXECUTE 05  94  04  03  43  ff  ff  ff  ff   ABC
FETCH   06  18  04  03  43  ff  ff  ff  ff   ABC
EXECUTE 06  18  04  03  44  ff  ff  ff  ff   ABC
FETCH   07  1a  04  03  44  ff  ff  ff  ff   ABC

   Because of space limitation, 16 lines have been left out here.

FETCH   0a  41  0b  01  45  ff  ff  ff  ff   ABCD
FETCH   0b  41  04  01  45  ff  ff  ff  ff   ABCD
EXECUTE 04  41  04  01  45  ff  ff  ff  ff   ABCD
FETCH   05  94  04  01  45  ff  ff  ff  ff   ABCD
EXECUTE 05  94  04  01  45  ff  ff  ff  ff   ABCDE
FETCH   06  18  04  01  45  ff  ff  ff  ff   ABCDE
EXECUTE 06  18  04  01  46  ff  ff  ff  ff   ABCDE
FETCH   07  1a  04  01  46  ff  ff  ff  ff   ABCDE
EXECUTE 07  1a  04  00  46  ff  ff  ff  ff   ABCDE
FETCH   08  45  04  00  46  ff  ff  ff  ff   ABCDE
FETCH   09  45  0b  00  46  ff  ff  ff  ff   ABCDE
EXECUTE 0b  45  0b  00  46  ff  ff  ff  ff   ABCDE
FETCH   0c  b2  0b  00  46  ff  ff  ff  ff   ABCDE
STOP    0c  b2  0b  00  46  ff  ff  ff  ff   ABCDE

Here the first jump 
in the program takes 
place. Instruction 
41H, "jump to 
address", is executed. 
The execution modi-
fies PROGRAM 
POINTER (PP) so 
that the address of the 
next instruction is 
04H.

Register A (RA) 
reaches value 0 at the 
end. At that moment 
register B has already 
value 46H, the charac-
ter code of letter F. 
That letter is, though, 
never printed because 
the program termi-
nates when register A 
has value 0.
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4.10  Subroutine calls and stack operations

It is common that larger computer programs are organized so that they consist of smaller
pieces of programs. The smaller pieces are usually subroutines. A subroutine typically
performs a certain well-defined operation in a program. Such an operation can be, for
example, printing a line of text, or reading a character from the keyboard. In every com-
puter program there must be a main program. In addition to the main program, there can
be subroutines which are called by the main program. The term "calling" is used to
describe the relation between a main program and a subroutine. A main program calls a
subroutine to perform a certain activity. When the subroutine has performed its activity,
there is a return to the main program, the calling program.

The programs which we have studied so far are just main programs which do not call
any subroutines. Program aaaabbbbcccc.iml in Figure 4-11a is an example where a sub-
routine is called. Figure 4-11b shows what happens in the execution of the program. The
first part of aaaabbbbcccc.iml is the main program. The last part of the program is sub-
routine named output_register_a_four_times. As its address name suggests, the
subroutine outputs the content of register A four times. As the subroutine is called three
times with register A contents ’a’, ’b’, and ’c’, the text aaaabbbbcccc emerges on the
screen when the program is executed. (It may again be a good idea to hand-compile the
program by writing numerical instruction codes and their addresses besides the textual
instruction codes.)

STACK POINTER is an important processor register in subroutine calls. It is one of
the three registers with which the main memory can be accessed. The value of STACK
POINTER is FFH when the imaginary computer starts operating. At the beginning, the
STACK POINTER thus points to the last memory location in the main memory.

Figure 4-11a.  A program in which subroutine output_register_a_four_times is called.

//  aaaabbbbcccc.iml 

//  This program prints the text "aaaabbbbcccc" to the 
//  screen. It calls a subroutine which prints the contents
//  of register A four times to the screen.

//  First register A is loaded with 'a', the character code
//  of letter a (61H). When register A is incremented, its
//  content becomes first 61H and later 62H. These are the
//  character codes of letters b and c.

beginning_of_program:
      load_register_a_with_value    'a'
      call_subroutine               output_register_a_four_times
      increment_register_a
      call_subroutine               output_register_a_four_times
      increment_register_a
      call_subroutine               output_register_a_four_times
      stop_processing

output_register_a_four_times:
      output_byte_from_register_a
      output_byte_from_register_a
      output_byte_from_register_a
      output_byte_from_register_a
      return_to_calling_program

The start address 
of the subroutine is the 
operand of instruction 
call_subroutine. 
The address name that 
is written here is the 
name of the subrou-
tine.
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Figure 4-11b.  Step-by-step execution of the program in Figure 4-11a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  15  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  15  61  ff  ff  ff  ff  ff  ff   
EXECUTE 02  15  61  61  ff  ff  ff  ff  ff   
FETCH   03  81  61  61  ff  ff  ff  ff  ff   
FETCH   04  81  0b  61  ff  ff  ff  ff  ff   
EXECUTE 0b  81  0b  61  ff  ff  fe  ff  04   
FETCH   0c  92  0b  61  ff  ff  fe  ff  04   
EXECUTE 0c  92  0b  61  ff  ff  fe  ff  04   a
FETCH   0d  92  0b  61  ff  ff  fe  ff  04   a
EXECUTE 0d  92  0b  61  ff  ff  fe  ff  04   aa
FETCH   0e  92  0b  61  ff  ff  fe  ff  04   aa
EXECUTE 0e  92  0b  61  ff  ff  fe  ff  04   aaa
FETCH   0f  92  0b  61  ff  ff  fe  ff  04   aaa
EXECUTE 0f  92  0b  61  ff  ff  fe  ff  04   aaaa
FETCH   10  82  0b  61  ff  ff  fe  ff  04   aaaa
EXECUTE 04  82  0b  61  ff  ff  ff  ff  04   aaaa
FETCH   05  16  0b  61  ff  ff  ff  ff  04   aaaa
EXECUTE 05  16  0b  62  ff  ff  ff  ff  04   aaaa
FETCH   06  81  0b  62  ff  ff  ff  ff  04   aaaa
FETCH   07  81  0b  62  ff  ff  ff  ff  04   aaaa
EXECUTE 0b  81  0b  62  ff  ff  fe  ff  07   aaaa
FETCH   0c  92  0b  62  ff  ff  fe  ff  07   aaaa
EXECUTE 0c  92  0b  62  ff  ff  fe  ff  07   aaaab
FETCH   0d  92  0b  62  ff  ff  fe  ff  07   aaaab
EXECUTE 0d  92  0b  62  ff  ff  fe  ff  07   aaaabb
FETCH   0e  92  0b  62  ff  ff  fe  ff  07   aaaabb
EXECUTE 0e  92  0b  62  ff  ff  fe  ff  07   aaaabbb
FETCH   0f  92  0b  62  ff  ff  fe  ff  07   aaaabbb
EXECUTE 0f  92  0b  62  ff  ff  fe  ff  07   aaaabbbb
FETCH   10  82  0b  62  ff  ff  fe  ff  07   aaaabbbb
EXECUTE 07  82  0b  62  ff  ff  ff  ff  07   aaaabbbb
FETCH   08  16  0b  62  ff  ff  ff  ff  07   aaaabbbb
EXECUTE 08  16  0b  63  ff  ff  ff  ff  07   aaaabbbb
FETCH   09  81  0b  63  ff  ff  ff  ff  07   aaaabbbb
FETCH   0a  81  0b  63  ff  ff  ff  ff  07   aaaabbbb
EXECUTE 0b  81  0b  63  ff  ff  fe  ff  0a   aaaabbbb
FETCH   0c  92  0b  63  ff  ff  fe  ff  0a   aaaabbbb
EXECUTE 0c  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbc
FETCH   0d  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbc
EXECUTE 0d  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbcc
FETCH   0e  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbcc
EXECUTE 0e  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbccc
FETCH   0f  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbccc
EXECUTE 0f  92  0b  63  ff  ff  fe  ff  0a   aaaabbbbcccc
FETCH   10  82  0b  63  ff  ff  fe  ff  0a   aaaabbbbcccc
EXECUTE 0a  82  0b  63  ff  ff  ff  ff  0a   aaaabbbbcccc
FETCH   0b  b2  0b  63  ff  ff  ff  ff  0a   aaaabbbbcccc
STOP    0b  b2  0b  63  ff  ff  ff  ff  0a   aaaabbbbcccc

Here the first sub-
routine call, instruc-
tion 81H, is executed. 
PROGRAM 
POINTER gets the 
value 0BH which is 
the beginning of the 
subroutine. The return 
address 04H is stored 
onto the stack in 
memory location 
FFH. STACK 
POINTER is decre-
mented to value FEH.

Here instruction 
82H is executed, and a 
return to calling pro-
gram takes place. 
0AH is the return 
address in the calling 
program which is cop-
ied from the stack to 
PROGRAM 
POINTER (PP). The 
value of STACK 
POINTER is incre-
mented to FFH.

When the subrou-
tine is called for the 
second time, the 
return address stored 
on the stack is 07H. 
The second instruc-
tion to increment reg-
ister A is in that 
address.
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In general, a stack is a memory area that is used so that what is last put to the stack,
comes out first from the stack. When a value is put to the stack, we say that a push opera-
tion is made. The opposite operation is a pop operation that takes a value away from the
stack. The imaginary processor uses the last part of the main memory as its stack. The
STACK POINTER register always points to the first free memory address of the stack.
When values are pushed to the stack, the value of STACK POINTER is decremented. In
pop operations the value of STACK POINTER is incremented.  We say that a pop opera-
tion takes a value away from the stack although in reality the value remains in a memory
location in the main memory. When the pop operation increments the STACK POINTER,
it frees a memory location for a push operation.

The stack is always used when subroutine calls are made. After a subroutine has
been called and executed, the execution of the calling program must continue from the
next statement after the subroutine call. This can be accomplished by storing a return
address into the stack. Instruction call_subroutine automatically pushes the return
address, the address of the next instruction, to the stack, and its counterpart instruction
return_to_calling_program pops the return address from the stack when it termi-
nates the execution of the subroutine.

Figure 4-11b shows how the contents of the registers change when the program in
Figure 4-11a is being executed. Note that all registers except PROGRAM POINTER con-
tain FFH when the computer starts operating. Note also, that in addition to the contents of
all registers, the contents of memory locations FEH and FFH are shown in Figure 4-11b.
The value in memory location FFH, the first free position of the stack, changes when a
subroutine call is made. Figure 4-11b shows that after the call_subroutine instruction,
81H, is executed, both PROGRAM POINTER (PP) and STACK POINTER (SP) have
new values, and stack memory location FFH contains a return address to the calling pro-
gram. An appropriate return address is on the stack during the time when the subroutine is
being executed. At the end of the subroutine, when the instruction with code 82H is exe-
cuted, the return address is read from the stack and STACK POINTER is incremented by
one.

The stack is simply one particular area of the main memory. This special memory
area is automatically used in subroutine calls to store return addresses in calling programs.
The stack is particularly useful in subroutine calls because it can also handle the difficult
situation when a called subroutine calls another subroutine. In such situations, many
return addresses are pushed onto the stack, and when they are popped away from the
stack, they automatically come out in the correct order.

Exercises with programs abcde.iml and aaaabbbbcccc.iml
Exercise 4-6. Which small modification should be made to program abcde.iml in order to make it print let-

ters ABCDEFGHI (nine letters from the beginning of the alphabet instead of just five letters) ?

Exercise 4-7. With very small modification to the textual form of abcde.iml the program would print HIJKL. 
What should be done to make this happen?

Exercise 4-8. Program abcde.iml can be made to print EDCBA by making two modifications to the program. 
The first modification is that ’A’ should be changed to ’E’ in Figure 4-10a. The other modifica-
tion involves replacing an instruction with another similar instruction. Which are these instruc-
tions?

Exercise 4-9. How can program abcde.iml be made to print AABBCCDDEE ? This can be achieved by 
inserting one new instruction inside the loop of the program.

Exercise 4-10 With which small modification can aaaabbbbcccc.iml be made to print xxxxyyyyzzzz ? 
Which instruction should be removed to make it print aaaabbbbbbbb ?

Remember that you can verify your answers with the IC8 simulator!
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4.11  Programs that use the keyboard, memory area, and stack

In this section we will study two IML programs which both read a text from the keyboard,
and display the characters of the text in reverse order. This means that if, for example, the
text "Hello " is typed in from the keyboard, the screen of the imaginary computer will look
like

Hello  olleH

after program execution. These programs again show us that there are usually several pos-
sibilities to write a computer program to perform a certain activity.

Program reverse_in_memory.iml, which is shown in Figure 4-12a, is the first pro-
gram to print the characters of a text in reverse order. The program reads characters from
the keyboard until a space character ’ ’ has been entered. Each character is stored in a
reserved memory area. When the program has read the space character from the keyboard,
it starts printing the whole text in reverse order. The text is printed in reverse order because
the memory area is processed backwards.

You should consult tables 4-1 and 4-2 to find out what the instructions in Figure 4-
12a do. In addition, Figure 4-12b shows what happens inside the imaginary processor and
on the screen when program reverse_in_memory.iml is being executed. The execution of
the program takes so long that only the beginning of it can be seen in Figure 4-12b. If you
study Figure 4-12b carefully, you will notice that the start address of the memory area is
19H. The name memory_for_characters refers to this address. For example, if the text
"Hello " is given to the program, it is stored in the memory in the following way:

ADDRESS    CHARACTER CODE   CHARACTER

19H          00H
1AH          48H            ’H’
1BH          65H            ’e’
1CH          6CH            ’l’
1DH          6CH            ’l’
1EH          6FH            ’o’
1FH          20H            ’ ’

The program uses a kind of trick when it stores value 00H to the first location of the
reserved memory area. When the program reads the characters from the memory, while it
is printing them in reverse order, the value 00H tells it when to stop reading and printing.
The program does not need to know how many characters were entered from the key-
board. The value 00H marks the end of the characters in their reverse order. 00H is a con-
venient value for this kind of purpose because it is not a character code of any visible
character.

Program reverse_in_memory.iml contains three loops. The shortest loop is

waiting_a_character:
      jump_if_input_not_ready        waiting_a_character

When the above instruction is executed, it causes a jump to itself, the same instruction, if
the input is not ready. The program waits in this loop until the user of the program types in
a character from the keyboard. The program keeps waiting forever if the user decides not
to touch the keyboard. The loop terminates when signal INPUT READY inside the imagi-
nary processor is set to value 1 (true). That happens when the INPUT PORT receives a
character code from the keyboard.

   These are sample pages from Kari Laitinen’s book
   A Natural Introduction to Computer Programming with C#.
   For more information, please visit http://www.naturalprogramming.com/
   © Copyright 2004-2005 Kari Laitinen. All rights reserved.
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The short loop is inside another loop which has the following structure

read_character:

      ...

      jump_if_registers_equal      print_characters
      jump_to_address              read_character

print_characters:

This loop can be called the input loop. As usual, the loop is constructed by using first a
conditional jump instruction, and then an unconditional jump instruction. The conditional
jump instruction makes the loop terminate when the code of the space character ’ ’ is in
both registers A and B.

The last loop, the output loop, is also made with two jump instructions. The instruc-
tion

      jump_if_register_a_zero      all_characters_printed

makes the program jump to its end when register A contains value 00H. That value is the
trick value which marks the beginning of the reserved memory area.

You may be wondering why there is an output instruction inside the input loop. The
output instruction is written right after the input instruction:

      input_byte_to_register_a
      output_byte_from_register_a

The reason for having the output instruction in the input loop is that it is convenient for the
user of the program to see what he or she is typing into the computer. When a low-level
programming language like IML is used, programs must be written so that they take care
that input data is displayed on the screen. This activity is called echoing. Program
reverse_in_memory.iml thus echoes the input to the screen.

Program reverse_in_stack.iml, which is shown in Figure 4-13a and "executed" in
Figure 4-13b, is another program which prints the characters of its input text in reverse
order. The main difference between the two programs is that, instead of a memory area,
reverse_in_stack.iml uses the stack to store the input text.

The last bytes of the main memory of the imaginary computer are used as stack
memory. Register STACK POINTER controls the use of the stack. For example, when
instruction

      push_register_a_to_stack

is executed for the first time in program reverse_in_stack.iml, value 00H is written to
memory location FFH which is the current value of register STACK POINTER. After that
the value of STACK POINTER is decremented to value FEH. This way the next push
instruction writes memory location FEH.

When program reverse_in_stack.iml is executed by giving it text "Hello ", the last
part of the main memory looks like the following

ADDRESS    CHARACTER CODE   CHARACTER

F9H          20H            ’ ’
FAH          6FH            ’o’
FBH          6CH            ’l’
FCH          6CH            ’l’
FDH          65H            ’e’
FEH          48H            ’H’
FFH          00H

after the execution of the program. The stack is a particularly useful means to reverse the
characters of a text because the stack always gives away the last byte that was put onto it.
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Therefore, the last character of the input text comes out first from the stack. Characters are
popped away from the stack with the instruction

      pop_register_a_from_stack

which first increments the value of register STACK POINTER, and then copies the con-
tent of the memory location whose address is in STACK POINTER to register A.

Another difference between programs reverse_in_memory.iml and
reverse_in_stack.iml is that the latter calls a subroutine to read characters from the key-
board. You should note, while studying the program execution in Figure 4-13b, that values
on the stack change also because the subroutine calling mechanism uses the stack. A sub-
routine which reads a character from the keyboard is particularly useful. The subroutine
read_and_echo_a_character could be copied from program reverse_in_stack.iml
and used in many other programs.

Exercises with programs reverse_in_memory.iml and reverse_in_stack.iml
Exercise 4-11. Now the programs stop reading characters from the keyboard when they encounter a space 

character ’ ’, 20H. It is thus not possible to type in complete sentences which contain spaces 
between words. Modify program reverse_in_memory.iml so that, instead of a space character, 
it stops reading characters when it encounters character ’.’, the full stop.

Exercise 4-12. Modify program reverse_in_stack.iml so that you take away the call to subroutine 
read_and_echo_a_character, and input the characters inside the first loop of the main pro-
gram. This can be achieved by moving the instructions which are inside the subroutine to the 
input loop of the calling program. (I’m asking you to do this just as an exercise. In general, it is 
a good habit to use subroutines in computer programming.)

Exercise 4-13. Modify program reverse_in_memory.iml so that you put there the subroutine 
read_and_echo_a_character which is in reverse_in_stack.iml. You should call the sub-
routine in the input loop in the same way as it is called in reverse_in_stack.iml. The behavior 
of the program may not change.

The last two exercises require quite a lot of modifications to the programs. You must hand-compile the programs 
and carefully calculate correct memory addresses if you test your answers with the IC8 simulator.

Other IML programs

The electronic material that is available for the readers of this book contains many IML programs which are not dis-
cussed in this chapter. These programs are also built in the simulators. In this chapter only the most essential pro-
grams are shown and explained.

If you are interested, you can study the other programs by printing them on paper, and by running them with 
a simulator. Among the extra programs there is one which shows what happens when a subroutine calls another 
subroutine. Another interesting program shows how numbers can be multiplied with the imaginary computer. 
Although the imaginary processor does not have machine instructions to perform multiplication operations, it is 
possible to multiply by executing many addition operations in a loop.
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Figure 4-12a.  A program that prints the characters of an input text in reverse order.

//  reverse_in_memory.iml  (c) 1997 - 2000 Kari Laitinen

//  The following program reads text from the keyboard. After the
//  space key has been pressed, the program displays the characters
//  of the entered text in reverse order. Thus if the user typed in
//
//      Hello 
//
//  the computer would respond
//
//       olleH

beginning_of_program:
      load_register_a_with_value       0
      set_memory_pointer               memory_for_characters
      store_register_a_to_memory

read_character:
      increment_memory_pointer
waiting_a_character:
      jump_if_input_not_ready          waiting_a_character
      input_byte_to_register_a
      output_byte_from_register_a
      store_register_a_to_memory
      load_register_b_with_value       ' '   // code for space
      jump_if_registers_equal          print_characters
      jump_to_address                  read_character

print_characters:
      output_byte_from_register_a
      decrement_memory_pointer
      load_register_a_from_memory
      jump_if_register_a_zero          all_characters_printed
      jump_to_address                  print_characters

all_characters_printed:
      stop_processing

memory_for_characters:     DATA        20

This definition reserves a memory area of 20 
bytes where the character codes, which are read 
from the keyboard, are stored. An IML compiler 
puts this memory area to those memory locations 
which follow the executable machine instructions. 
Because the machine instructions need the first 25 
(19H) bytes from the main memory, this memory 
area starts from address 19H. The executable pro-
gram starts, as always, from address 00H.

The text that follows the charac-
ter pair //, double slash, on this line 
is a comment, which is ignored by 
the compiler. The double slash is 
part of the comment. The text 
before the double slash on this line 
is a valid IML instruction.
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Figure 4-12b.  Step-by-step execution of the program in Figure 4-12a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  15  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  15  00  ff  ff  ff  ff  ff  ff   
EXECUTE 02  15  00  00  ff  ff  ff  ff  ff   
FETCH   03  21  00  00  ff  ff  ff  ff  ff   
FETCH   04  21  19  00  ff  ff  ff  ff  ff   
EXECUTE 04  21  19  00  ff  19  ff  ff  ff   
FETCH   05  26  19  00  ff  19  ff  ff  ff   
EXECUTE 05  26  19  00  ff  19  ff  ff  ff   
FETCH   06  22  19  00  ff  19  ff  ff  ff   
EXECUTE 06  22  19  00  ff  1a  ff  ff  ff   
FETCH   07  4b  19  00  ff  1a  ff  ff  ff   
FETCH   08  4b  06  00  ff  1a  ff  ff  ff   
EXECUTE 06  4b  06  00  ff  1a  ff  ff  ff   
FETCH   07  4b  06  00  ff  1a  ff  ff  ff   
FETCH   08  4b  06  00  ff  1a  ff  ff  ff   
EXECUTE 06  4b  06  00  ff  1a  ff  ff  ff   
FETCH   07  4b  06  00  ff  1a  ff  ff  ff   
FETCH   08  4b  06  00  ff  1a  ff  ff  ff   
EXECUTE 08  4b  06  00  ff  1a  ff  ff  ff   
FETCH   09  96  06  00  ff  1a  ff  ff  ff   
EXECUTE 09  96  06  48  ff  1a  ff  ff  ff   
FETCH   0a  92  06  48  ff  1a  ff  ff  ff   
EXECUTE 0a  92  06  48  ff  1a  ff  ff  ff   H
FETCH   0b  26  06  48  ff  1a  ff  ff  ff   H
EXECUTE 0b  26  06  48  ff  1a  ff  ff  ff   H
FETCH   0c  17  06  48  ff  1a  ff  ff  ff   H
FETCH   0d  17  20  48  ff  1a  ff  ff  ff   H
EXECUTE 0d  17  20  48  20  1a  ff  ff  ff   H
FETCH   0e  43  20  48  20  1a  ff  ff  ff   H
FETCH   0f  43  11  48  20  1a  ff  ff  ff   H
EXECUTE 0f  43  11  48  20  1a  ff  ff  ff   H
FETCH   10  41  11  48  20  1a  ff  ff  ff   H
FETCH   11  41  05  48  20  1a  ff  ff  ff   H
EXECUTE 05  41  05  48  20  1a  ff  ff  ff   H
FETCH   06  22  05  48  20  1a  ff  ff  ff   H
EXECUTE 06  22  05  48  20  1b  ff  ff  ff   H
FETCH   07  4b  05  48  20  1b  ff  ff  ff   H
FETCH   08  4b  06  48  20  1b  ff  ff  ff   H
EXECUTE 06  4b  06  48  20  1b  ff  ff  ff   H
FETCH   07  4b  06  48  20  1b  ff  ff  ff   H
FETCH   08  4b  06  48  20  1b  ff  ff  ff   H
EXECUTE 08  4b  06  48  20  1b  ff  ff  ff   H
FETCH   09  96  06  48  20  1b  ff  ff  ff   H
EXECUTE 09  96  06  65  20  1b  ff  ff  ff   H
FETCH   0a  92  06  65  20  1b  ff  ff  ff   H
EXECUTE 0a  92  06  65  20  1b  ff  ff  ff   He
FETCH   0b  26  06  65  20  1b  ff  ff  ff   He
EXECUTE 0b  26  06  65  20  1b  ff  ff  ff   He
FETCH   0c  17  06  65  20  1b  ff  ff  ff   He
   ... etc.

Here instruction 
4BH, "jump if input 
not ready" is fetched 
and executed three 
times because the pro-
gram has to wait for 
the user to type in a 
letter.

Instruction 26H, 
"store register A to 
memory", stores here 
the value 48H to the 
memory location 
1AH. The address 
stored in register 
MEMORY POINTER 
(MP) is used to deter-
mine which location 
is written by instruc-
tion 26H. MEMORY 
POINTER is later 
incremented to 
address 1BH where 
the next character 
code will be written.
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Figure 4-13a.  Another version of a program to reverse the characters of a text.

//  reverse_in_stack.iml  (c) 1997 - 2000 Kari Laitinen

//  The following program is similar to "reverse_in_memory.iml".
//  It reads a text from keyboard as a string of characters.
//  After receiving a space, it displays the characters
//  in reverse order. This program puts the characters into the
//  stack. At the end it reads the characters away from the stack.
//  Due to the nature of stack as a data storage, the characters
//  will automatically come out in reverse order.

beginning_of_program:
      load_register_a_with_value       0
      push_register_a_to_stack

read_character:
      call_subroutine                  read_and_echo_a_character
      push_register_a_to_stack
      load_register_b_with_value       ' '  //  code for space
      jump_if_registers_equal          print_characters_from_stack
      jump_to_address                  read_character

print_characters_from_stack:
      pop_register_a_from_stack
      jump_if_register_a_zero          all_characters_printed
      output_byte_from_register_a
      jump_to_address                  print_characters_from_stack

all_characters_printed:
      stop_processing

read_and_echo_a_character:
      jump_if_input_not_ready          read_and_echo_a_character
      input_byte_to_register_a
      output_byte_from_register_a
      return_to_calling_program

This is a subroutine which is called to read a 
character from the keyboard. The address name  
read_and_echo_a_character refers to the 
beginning of the subroutine, and is also the name 
of the subroutine. This subroutine echoes the read 
character to the screen. The calling program 
receives the character in register A.

This jump instruction is exe-
cuted as long as nothing has been 
entered from the keyboard. The 
program waits here until the user 
types in a character.
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Figure 4-13b.  Step-by-step execution of the program in Figure 4-13a.

Status  PP  IC  IO  RA  RB  MP  SP  FE  FF   Screen contents

RESET   00  ff  ff  ff  ff  ff  ff  ff  ff   
FETCH   01  15  ff  ff  ff  ff  ff  ff  ff   
FETCH   02  15  00  ff  ff  ff  ff  ff  ff   
EXECUTE 02  15  00  00  ff  ff  ff  ff  ff   
FETCH   03  a2  00  00  ff  ff  ff  ff  ff   
EXECUTE 03  a2  00  00  ff  ff  fe  ff  00   
FETCH   04  81  00  00  ff  ff  fe  ff  00   
FETCH   05  81  13  00  ff  ff  fe  ff  00   
EXECUTE 13  81  13  00  ff  ff  fd  05  00   
FETCH   14  4b  13  00  ff  ff  fd  05  00   
FETCH   15  4b  13  00  ff  ff  fd  05  00   
EXECUTE 13  4b  13  00  ff  ff  fd  05  00   
FETCH   14  4b  13  00  ff  ff  fd  05  00   
FETCH   15  4b  13  00  ff  ff  fd  05  00   
EXECUTE 15  4b  13  00  ff  ff  fd  05  00   
FETCH   16  96  13  00  ff  ff  fd  05  00   
EXECUTE 16  96  13  48  ff  ff  fd  05  00   
FETCH   17  92  13  48  ff  ff  fd  05  00   
EXECUTE 17  92  13  48  ff  ff  fd  05  00   H
FETCH   18  82  13  48  ff  ff  fd  05  00   H
EXECUTE 05  82  13  48  ff  ff  fe  05  00   H
FETCH   06  a2  13  48  ff  ff  fe  05  00   H
EXECUTE 06  a2  13  48  ff  ff  fd  48  00   H
FETCH   07  17  13  48  ff  ff  fd  48  00   H
FETCH   08  17  20  48  ff  ff  fd  48  00   H
EXECUTE 08  17  20  48  20  ff  fd  48  00   H
FETCH   09  43  20  48  20  ff  fd  48  00   H
FETCH   0a  43  0c  48  20  ff  fd  48  00   H
EXECUTE 0a  43  0c  48  20  ff  fd  48  00   H
FETCH   0b  41  0c  48  20  ff  fd  48  00   H
FETCH   0c  41  03  48  20  ff  fd  48  00   H
EXECUTE 03  41  03  48  20  ff  fd  48  00   H
FETCH   04  81  03  48  20  ff  fd  48  00   H
FETCH   05  81  13  48  20  ff  fd  48  00   H
EXECUTE 13  81  13  48  20  ff  fc  48  00   H
FETCH   14  4b  13  48  20  ff  fc  48  00   H
FETCH   15  4b  13  48  20  ff  fc  48  00   H
EXECUTE 13  4b  13  48  20  ff  fc  48  00   H
FETCH   14  4b  13  48  20  ff  fc  48  00   H
FETCH   15  4b  13  48  20  ff  fc  48  00   H
EXECUTE 15  4b  13  48  20  ff  fc  48  00   H
FETCH   16  96  13  48  20  ff  fc  48  00   H
EXECUTE 16  96  13  65  20  ff  fc  48  00   H
FETCH   17  92  13  65  20  ff  fc  48  00   H
EXECUTE 17  92  13  65  20  ff  fc  48  00   He
FETCH   18  82  13  65  20  ff  fc  48  00   He
EXECUTE 05  82  13  65  20  ff  fd  48  00   He
FETCH   06  a2  13  65  20  ff  fd  48  00   He
EXECUTE 06  a2  13  65  20  ff  fc  48  00   He
FETCH   07  17  13  65  20  ff  fc  48  00   He
   ... etc.

Here instruction 
81H, "call subrou-
tine", is executed. The 
subroutine is in 
address 13H. At this 
moment the value 
00H and the return 
address 05H are on 
the stack.

When instruction 
A2H is executed here, 
the content of register 
A (48H, the character 
code of letter H) is 
copied to the top of 
the stack which is in 
address FEH. After 
that the value of regis-
ter STACK POINTER 
is decremented to 
value FDH which is 
the new top location 
of the stack. Note that 
the stack locations 
FDH, FCH, FBH, etc. 
are not shown here 
because of space limi-
tations.
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4.12  Chapter summary – towards high-level programming

In this chapter, we have studied an imaginary computer and the simple IML language
which we used to write programs for the computer. Our aim was to learn how computers
work in general: how they execute sequences of machine instructions which are called
programs. Machine instructions are numerical codes which the processor executes in a
certain way.

A computer programmer needs to know something about the logical operation of
computers. That is the reason why the imaginary computer and its machine-level program-
ming language were introduced here. However, I would like to emphasize that a serious
computer programmer should not write programs by using languages like IML. It is better
to use high-level languages such as C#, which allow one to think in terms of application
domain concepts.

During the early days of computing, machine-level programming languages similar
to IML were widely used in software development. They have been traditionally called
assembly languages. However, because software development was found to be rather dif-
ficult with assembly languages, high-level programming languages were invented. Writ-
ing programs with assembly languages is difficult because of the following reasons:

• The program writer must know the registers and the behavior of the processor for
which he or she is writing a program.

• An assembly language programmer must think in terms of memory locations and
register contents.

• Even for simple operations, many lines of source program code must be written
with an assembly language.

High-level languages allow programmers to pay more attention to what the programs
should do, and they free programmers from knowing the internal structure of the used pro-
cessor. High-level programming languages are usually machine-independent, which
means that a program written with a high-level language can be run by different comput-
ers. Every type of computer must, though, have its own compiler to transform a high-level
program into machine instructions of that particular computer. C# is a high-level program-
ming language. Although a C# compiler is available only for personal computers and the
Windows operating system, it would be possible to build a C# compiler for a different
operating system, and all C# programs could be compiled to be run in that operating sys-
tem.

Programs written with a high-level language are usually shorter than programs writ-
ten with a language like IML. To demonstrate this, let’s consider the following piece of
IML source program:

// Some values could be stored beforehand to memory
// locations first_number and second_number.

      set_memory_pointer               first_number
      load_register_a_from_memory
      set_memory_pointer               second_number
      load_register_b_from_memory

      add_register_b_to_a
      set_memory_pointer               sum_of_numbers
      store_register_a_to_memory

first_number:      DATA       1
second_number:     DATA       1
sum_of_numbers:    DATA       1
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The instructions above first calculate the sum of the numbers that are in the memory
locations which have names first_number and second_number. Then the sum is
stored in the memory location which has name sum_of_numbers. If a high-level lan-
guage like the C# programming language existed for the imaginary computer, the above
IML instructions could be written with the high-level language in the following way

int  first_number ;
int  second_number ;
int  sum_of_numbers ;

// Some values should be stored to variables
// first_number and second_number.

sum_of_numbers  =  first_number  +  second_number ;

By comparing the two pieces of program it is easy to see that the program written
with the high-level language is shorter. Later on, after you have learned C# programming,
you will most likely say that the high-level program is also easier to understand.

You may wonder why we studied the IML language if high-level programming lan-
guages are more convenient. The answer is, that in order to understand high-level lan-
guages properly, it is important to know something about processors and machine-level
programming. These matters are easy to explain with a simple processor and with a simple
language. Without knowing anything about machine-level programming, it is hard to
understand why high-level programs need to be compiled, and what is happening in com-
pilation. Just like an IML compiler, the compiler of a high-level programming language
translates textual source programs to list of numerical machine instructions. If there
existed a compiler to translate the above high-level program for the imaginary computer,
the compiler could produce the same machine instructions which would result in the trans-
lation of the corresponding piece of an IML source program. (In reality, however, it is very
difficult to build such a compiler.)

"Bugs" in computer programs

While reading this chapter you may have realized, or you may have experienced personally with the IC8 simulator, 
that it is possible to make computer programs which do not behave as intended, or which never terminate. The fol-
lowing is an example of a program that never terminates:

    beginning_of_program:
         load_register_a_with_value         ’X’
         output_byte_from_register_a
         jump_to_address                    beginning_of_program

The above program is an infinite (endless) loop which keeps displaying the letter X forever. These kinds of 
loops can be made accidentally in computer programs. When a computer program does not work as originally 
planned, we say that there is an error in the program. A never-terminating program is one example of an erroneous 
program. There can be many kinds of errors in programs, and it is common in the world of computers to call errors 
by the word "bug". The activity of searching and removing errors in computer programs is called "debugging". 
Computer programs which can help in the search of errors in other programs are called debugging tools, or simply 
debuggers.

The English word "bug" can mean any small insect. That word started to mean a problem in a computer 
because small insects really did cause malfunctions in early computers. A small insect could cause an erroneous 
electrical connection among the relays of an early computer, and make the computer behave in an unexpected man-
ner. Small insects are no threat to modern computers because their electronic circuits are so small that no bug can 
walk inside them, but humans can still make all kinds of errors when they write computer programs.
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