
CHAPTER 5

VARIABLES AND OTHER BASIC ELEMENTS IN C# PROGRAMS

Now, finally, we really begin studying computer programming with the C# language. Vari-
ables are important elements in computer programs, and they are needed in almost every
computer program. In this chapter we shall study different types of variables and use the
variables in simple arithmetic computations. We shall also explore names and keywords
which are very basic elements in source programs.

This chapter, as well as the following chapters, introduce many examples of C# source
programs for you to study. A source program is a textual description of what the computer
should do when the compiled version of the source program is executed by a computer.
The source programs that you will see in this chapter contain variable declarations fol-
lowed by executable program statements, action statements, which do something with the
variables. The general structure of the programs is the following:

using System ;

class ClassName
{
 static void Main()
 {
 Variable declarations.

 Action statements that modify and print
 the contents of the variables that
 were declared above.
 }
}

As was already discussed in Chapter 2, the structure of our first programs is such that a
static method named Main() contains the action statements of the program, and the
Main() method is written inside a class declaration. At this phase, we do not attempt to
profoundly understand the meaning of the class declaration. We’ll just try to figure out
how the internal statements of method Main() operate.

These are sample pages from Kari Laitinen’s book
"A Natural Introduction to Computer Programming with C#".
For more information, please visit
http://www.naturalprogramming.com/csbook.html

98 Chapter 5: Variables and other basic elements in C# programs

5.1 Integer variables (int, short, long, byte, uint, ushort, ulong, sbyte, char)

A variable in a source program is a basic program element that can be used to store numer-
ical values. The value of a variable usually changes when the program is being executed.
When we declare a variable in a program, we actually reserve a few bytes of computer's
main memory to be used for a special purpose. The following is an example of a variable
declaration:

int integer_from_keyboard ;

This source program line which introduces a variable into a program can also be called a
variable definition. The above source program line means that four bytes (32 bits) of
memory are reserved to store an integer that will be read from the keyboard, and these four
bytes can be referred to with the name integer_from_keyboard. Integers are whole
numbers that have no decimal point. Integers can be positive or negative. Variables of type
int are said to be 32-bit variables because they occupy four bytes in the main memory of
the computer

A variable always has a type, such as int which is an abbreviation of the word "inte-
ger". The programmer, the person who writes the variable declarations in a program, must
give a unique name to each variable. In the declaration above, the name of the variable is
integer_from_keyboard. Variable declarations, like all C# statements, must be termi-
nated with a semicolon ;.

Program Game.cs, presented as a program description on the following page open-
ing, is an example program where two variables of type int are declared and used. The
program is an extremely simple computer game. Unfortunately it is not a fair game
because the user of the program will always lose. The program always wins by presenting
an integer that is one larger than the number given by the user of the program.

A source program like Game.cs is a text file in a computer's hard disk memory
before it is compiled. When a source program is compiled, we get an executable version of
the program. The compiler is a computer tool that can convert a source program into exe-
cutable form. The compiler reads and processes a source program file in the same order in
which it is written. While compiling program Game.cs, the compiler sees first the variable
declarations and reserves main memory for the variables. It then transforms the remaining
statements, the action statements, to numerical instructions to be processed during pro-
gram execution.

The action statements in a source program describe the activities a computer per-
forms when the executable version of the program is run by a computer. The action state-
ments of a program are executed in an order that corresponds with the order in which the
statements are written in the source program. In the case of the program Game.cs, the
computer performs the following activities:

• First it asks the user to enter an integer from the keyboard.

• It then reads the integer entered from the keyboard and stores it in variable inte-
ger_from_keyboard.

• Then it calculates a value that is one larger than the user-given integer and stores
that value in variable one_larger_integer.

• In the end, it displays the values of both variables and informs the user that the
computer won the game.

There are four action statements in Game.cs. Each statement is terminated with a
semicolon (;). The variable declarations at the beginning are also statements, but they are
not action statements. Variable declarations just reserve memory to store information.

5.1 Integer variables (int, short, long, byte, uint, ushort, ulong, sbyte, char) 99

Although the memory space that is reserved for an int variable is rather large, 4
bytes, there are always limitations how large values can be stored in an int variable. A 4-
byte int variable can store values in the ranges

-2,147,483,648, ... , -1, 0, 1, ... , 2,147,483,647 (decimal numbering system)

-80000000H, ..., -1, 0, 1, ... , 7FFFFFFFH (hexadecimal numbering system)

A 4-byte int can thus store 4,294,967,296 (100000000H) different values. To demon-
strate the difficulties that arise when the storage capacity of an int variable is exceeded,
program Game.cs is also executed with an exceedingly large input value in the program
description. The computer tries to increment the value 2,147,483,647 which is stored in a
4-byte int variable. This results in the number -2,147,483,648 and not in 2,147,483,648.
To explain this strange behavior of the program, we must remember that the memories of
computers can contain only non-negative binary numbers. Negative numbers are repre-
sented so that some positive values stored in memory are considered as negative numbers.
For example, the value 2,147,483,648 is treated as -2,147,483,648. The values that can be
contained in 4-byte int variables have the following meanings:

VALUE IN MEMORY MEANING IN PROGRAM

2,147,483,648 (80000000H) -2,147,483,648
2,147,483,649 (80000001H) -2,147,483,647
2,147,483,650 (80000002H) -2,147,483,646
. .
. .
4,294,967,294 (FFFFFFFEH) -2
4,294,967,295 (FFFFFFFFH) -1
0 0
1 1
. .
. .
2,147,483,646 (7FFFFFFEH) 2,147,483,646
2,147,483,647 (7FFFFFFFH) 2,147,483,647

Figure 5-1 shows how the variables of program Game.cs look like in the main mem-
ory of a computer, and how the values of the variables change when the program is exe-
cuted with input value 1234. A variable declaration like

int integer_from_keyboard ;

reserves four bytes from contiguous memory locations somewhere in the main memory.
Right after the declaration of the variable, the contents of the four bytes are unspecified.
After an assignment statement like

integer_from_keyboard = Convert.ToInt32(
 Console.ReadLine()) ;

is executed, the four bytes are given values that represent the number that was typed in
from the keyboard.

The illustration in Figure 5-1 shows the general principle according to which mem-
ory is reserved for variables. The compiler may, however, optimize the use of memory if it
finds out that it can save memory.

100 Chapter 5: Variables and other basic elements in C# programs

// Game.cs (c) 2002 Kari Laitinen

using System ;

class Game
{
 static void Main()
 {
 int integer_from_keyboard ;
 int one_larger_integer ;

 Console.Write(
 "\n This program is a computer game. Please, type in "
 + "\n an integer in the range 1 ... 2147483646 : ") ;

 integer_from_keyboard = Convert.ToInt32(Console.ReadLine()) ;

 one_larger_integer = integer_from_keyboard + 1 ;

 Console.Write("\n You typed in " + integer_from_keyboard + "."
 + "\n My number is " + one_larger_integer + "."
 + "\n Sorry, you lost. I won. The game is over.\n") ;
 }
}

This line is not actually part of the pro-
gram. This is a comment line that gives
documentary information to the reader of
the program. A double slash // marks the
beginning of a comment line. The com-
piler ignores the double slash and the text
that follows it on the same line.

This line of source code reads an integer from
the keyboard and stores the read integer into vari-
able integer_from_keyboard. The execution
of the program stays on this line until the user of
the program has entered an integer. This statement
is executed so that first the ReadLine() method
reads a line of text from the keyboard, and then the
text is converted to an integer value with the
ToInt32() method.

Game.cs - 1.+ A program that implements a simple computer game.

Here two integer variables are
declared. The names of the variables
are integer_from_keyboard and
one_larger_integer. The vari-
ables are referred to with these
names later in the program.

Texts inside double quote characters
" " are strings of characters that will be
displayed on the screen. \n among the
text means that the text will begin from
a new line. \n is said to be the newline
character.

5.1 Integer variables (int, short, long, byte, uint, ushort, ulong, sbyte, char) 101

 Console.Write(
 "\n This program is a computer game. Please, type in "
 + "\n an integer in the range 1 ... 2147483646 : ") ;

 integer_from_keyboard = Convert.ToInt32(Console.ReadLine()) ;

 one_larger_integer = integer_from_keyboard + 1 ;

 Console.Write("\n You typed in " + integer_from_keyboard + "."
 + "\n My number is " + one_larger_integer + "."
 + "\n Sorry, you lost. I won. The game is over.\n") ;

After this assignment statement
has been executed, the value of
variable one_larger_integer is
one greater than the value stored in
integer_from_keyboard.

Console is a standard C# class that contains meth-
ods for writing text to the screen and reading text from
the keyboard. The method named Write() can write
text to the screen. The text that is going to be displayed
on the screen consists of two strings of characters.
These two character strings are concatenated with oper-
ator +, and the text is given inside parentheses to
method Write().

It is possible to output many types of data in a single call to method Write().
Here the values of the integer variables are displayed between strings of characters
given inside double quotes. Operator + is placed between different types of data.
The + operator converts the numerical values stored in the variables to character
strings, and joins these character strings to the other character strings given inside
double quotes. A semicolon (;) terminates the entire statement.

Game.cs - 1 - 1. The action statements of the program.

Game.cs - X. In the second execution too large an input value is given to the program.

D:\csfiles2>Game

 This program is a computer game. Please, type in
 an integer in the range 1 ... 2147483646 : 1234

 You typed in 1234.
 My number is 1235.
 Sorry, you lost. I won. The game is over.

D:\csfiles2>Game

 This program is a computer game. Please, type in
 an integer in the range 1 ... 2147483646 : 2147483647

 You typed in 2147483647.
 My number is -2147483648.
 Sorry, you lost. I won. The game is over.

102 Chapter 5: Variables and other basic elements in C# programs

,

Figure 5-1. The variables of program Game.cs in a computer’s main memory.

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

We can think that the main memory of a computer is a long list of
single-byte memory cells, and each byte has a unique address. I have
written here "fictitious" hexadecimal memory addresses. The
addresses are fictitious because we do not usually know, and we do
not need to know, the numerical memory addresses of variables.
Here we suppose that these four bytes of memory are reserved for
variable one_larger_integer. We can say that variable
one_larger_integer is in memory address 12F8C0H. The con-
tents of the memory locations are marked with ??H because right
after their declaration the variables have unspecified values.

As each memory location is an
8-bit memory cell, the variable
integer_from_keyboard
looks like this if individual bits
are shown.

 1 1 0 1 0 0 1 0

 0 0 0 0 0 1 0 0

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

12F8C0H:

12F8C1H:

12F8C2H:

12F8C3H:

12F8C4H:

12F8C5H:

12F8C6H:

12F8C7H:

12F8BEH:

12F8BFH:

12F8C8H:

12F8C9H:

These four bytes are
reserved for variable
integer_from_key-

board. That variable
has memory address
12F8C4H.

 ??H

 ??H

 ??H

 ??H

 ??H

 ??H

 D2H

 04H

 00H

 00H

 ??H

 ??H

 ??H

 ??H

 D3H

 04H

 00H

 00H

 D2H

 04H

 00H

 00H

 ??H

 ??H

We have here three "pictures" of the
same memory locations. This last
picture describes the situation when
all statements of program Game.cs
are executed. If 1234 was the value
given from the keyboard, the value
of variable one_larger_integer
is 1235, 4D3H, at the end.

Here the memory locations are shown right after a value
is given from the keyboard. We suppose that the given
value is 1234, which is 4D2H as a hexadecimal number.
In personal computers and many other computers, the
four bytes of an int variable are stored so that the least
significant byte is in a memory location that has the
smallest numerical address. The three other bytes are in
subsequent memory locations.

5.1 Integer variables (int, short, long, byte, uint, ushort, ulong, sbyte, char) 103

In addition to variables of type int, C# has other types of integer variables. These
variables are sometimes called integral types. Type long is another integer type. Variables
of type long occupy 8 bytes (64 bits) of memory. They are thus longer integer variables
than variables of type int. If we declared the variables of program Game.cs as

long integer_from_keyboard ;
long one_larger_integer ;

the program would work correctly with much larger numbers as it does now.
A third integer variable type is short which is a 2-byte, 16-bit, variable. This type

may be useful when your program uses only integer values that are smaller than 32,767. If
you need to store very many such values, you can save some memory by using type short
instead of type int. In small programs, though, there is no need to use variables of type
short because memory is rather abundant in modern computers.

In many cases, negative integers are not needed in source programs. In such situa-
tions, integer variables can be declared to be non-negative. C# has variable types uint,
ulong, and ushort to declare "unsigned" non-negative integer variables. A variable of
type uint, for example, is similar to an int variable except that it cannot have any nega-
tive values. Instead, the variable can have larger positive values. If the variables in pro-
gram Game.cs were declared

uint integer_from_keyboard ;
uint one_larger_integer ;

there would be no difficulties in running the program with input values up to
4,294,967,294.

byte is a variable type to store non-negative 8-bit values in the range 0 ... 255. A
variable of type byte occupies a single byte of memory. sbyte is a variable type that is
similar to the byte type. The difference between these types is that sbyte variables can
contain negative values.

Variables of type char are 2-byte (16-bit) variables that are used to store 16-bit Uni-
code character codes. The first 256 Unicodes are the same as the codes in the ASCII cod-
ing system. char variables are like integer variables because the used character codes are
integer values. However, it is better not to use char variables in situations where integer
variables are needed.

The integer types int, short, long, etc. will be used when we need to store whole
numbers in our computer programs. The most common integer type is int. Integer vari-
ables are convenient when we want to count something in our programs. Table 5-1 sum-
marizes the integer types and other variable types in C#. Figure 5-2 shows how some
variables look like in the main memory of a computer. The other variable types will be dis-
cussed later in this chapter. Type bool is a special variable type to declare so-called bool-
ean variables. Boolean variables can be given only two values: true and false. We shall
study these variables in more detail when we encounter them in some example programs.

Exercises with program Game.cs
Exercise 5-1. Modify the program so that it always loses the game by presenting a number which is one

smaller than the number given by the user. With operator - it is possible to perform subtractions
in C#.

Exercise 5-2. Modify the program so that it prints three numbers that are larger than the number given by the
user. For example, if the user types in 144, the program must print 145, 146, and 147.

