
1 © Kari Laitinen

• When you write Python programs, it is important
that you configure your program editor so that it
does not put tabulator characters into the source
program file. When you do these exercises, the
settings of you program editor should be such that
it puts three space charcters into the program file
when the tabulator key is pressed.

• Because program blocks are formed through
indentation in Python, tabulator characters can be
harmful if tabulation step is not correct. The best
way to get rid from all problems related to the
tabulator character, is to not use that character in
your souce program file. This way your program
looks the same regardless of the editor or browser
that is used to view the program.

Kari Laitinen
http://www.naturalprogramming.com
2009-10-05 File created.
2013-10-13 Last modification.

Exercises related to Python programming

2 © Kari Laitinen

You can find a program named GuessAWord.py in the folder
http://www.naturalprogramming.com/pythonprograms/pythonfilesextra/
This program is a simple computer game in which the player has to try to guess the characters
of a word that is ’known’ by the game. Study the program and play the game in order to find
out how the game has been programmed.

Exercise 1:

Improve the Guess-A-Word game so that the word to be guessed is randomly taken from a list
of words. A list of words can be created with a statement such as

words_to_be_guessed = ["VIENNA", "HELSINKI", "COPENHAGEN",
 "LONDON", "BERLIN", "AMSTERDAM"]

A random index for a list such as the one above can be created with the random.random()
method in an expression like

int ((random.random() * len(words_to_be_guessed)))

The random.random() method returns a double value in the range 0.0 1.0 so that the value
1.0 is never returned. The above expression thus calculates a suitable random index. When
double values are converted to int values, they are always rounded ’downwards’ to the
smaller integer value. To use the random.random() method, you must have a suitable import
statement in your program. (For advice, see the MathDemo.py program.)

EXERCISES WITH PROGRAM GuessAWord.py

3 © Kari Laitinen

Exercise 2:

Now the program is such that it terminates when the game is finished. Modify the program so
that the game can be played several times during a single run of the program. In the above-
mentioned folder there is a program named RepeatableGame.py which should be a helpful
example.

Exercise 3:

Improve the program so that it counts how many guesses the player makes during a game.
After a game is played, and before a new game starts, the program should print how many
guesses were made. The following variable could be usedful in this task

number_of_guesses = 0

Exercise 4:

Improve the program so that it prints game statistics before the program terminates. This
means that the program shows which words were being guessed and how many guesses were
made for each word. The game statistics could look like the following.

 PLAYED WORD GUESSES

 COPENHAGEN 7
 LONDON 6
 COPENHAGEN 4
 BERLIN 5
 HELSINKI 4

4 © Kari Laitinen

As the ’played words’ will be randomly selected from an array, it is possible that the same
word is played several times.

You can use the following kind of data items to store data of games:

games_played = 0
played_words = []
guesses_in_games = []

A variable can be used to count how many games are played, and you can use lists to store the
played words and the number of guesses made. A new data item can be added to the end of a
list with a method named append(). New data should be put to the lists after each game is
played, and the data should be displayed on the screen in the end when the user no longer
wants to play new games.

5 © Kari Laitinen

Exercise 1:

Write a new method named make_stomach_empty() to class Animal in Animals.py. The
stomach of an Animal object can be emptied by writing an empty string "" as the stomach
contents. The new method could be called

cat_object.make_stomach_empty()
dog_object.make_stomach_empty()

To test this new method, you should use method make_speak().

Exercise 2:

Modify the constructor of class Animal so that its parameter gets a default value. After this
modification an Animal object can be created without supplying any parameters, for
example, in the following way:

default_animal = Animal()

The data field (instance attribute) species_name can be given the value "default animal".

By studying program Windows.py you can find out how constructor parameters can be given
default values. Also in this exercise you should use method make_speak() to check that your
modifications are correct.

EXERCISES WITH PROGRAM Animals.py

6 © Kari Laitinen

Exercise 3:

The data members or data fields of Python objects are frequently called attributes or, more
precisely, instance attributes. In Python classes, you do not need to declare the data fields.
Instead, the data fields become existent when you write inside a method

self.data_field_name = ...

Add a new data field (instance attribute) to class Animal by writing the statement

self.animal_name = ...

to the constructor. Here the aim is that an Animal object can be created, for example, with the
statement

named_cat = Animal("cat", "Arnold")

Copying of an object must be modified so that the new data field will be copied as well.
Method make_speak() must be modified so that it produces an output that looks like

Hello, I am a cat named Arnold.
I have eaten: ...

The new data field can be given the default value "nameless".

7 © Kari Laitinen

Exercise 4:

Modify method make_speak() so that it prints

Hello, I am a ... named ...
My stomach is empty.

in that case when stomach_contents references an empty string. The stomach of an Animal
object is empty as long as method feed() has not been called. You can use standard function
len() to check whether the stomach is empty. Function len() can be called, for example, in the
following way.

if len(self.stomach_contents) == 0 :

 # stomach_contents references an empty string.
 ...

If the stomach is not empty, the program should produce the original output.

8 © Kari Laitinen

Exercise 5:

Modify method feed() so that it will be possible to feed another animal to an Animal object.
Method feed() can operate in the same way as the constructor of the class: it can check the
type of the received parameter, and then decide what to do. If a parameter of type Animal is
given, the animal will be eaten.

Another animal can be "eaten", for example, so that the data field animal_name of the
"eatable" animal will be copied to the stomach of the "eater". In the new feed() method, you
can refer to the data field animal_name of the given parameter in the same way as is done in
the constructor.

The data field animal_name of the "eaten" animal can be given the value "Eaten animal".
When the new feed() method is written, the statements

tiger_object = Animal("tiger", "Richard")
cow_object = Animal("cow", "Bertha")

tiger_object.feed(cow_object)
tiger_object.make_speak()

should produce the output

 Hello, I am a tiger named Richard
 I have eaten: Bertha,

9 © Kari Laitinen

Exercise 6:

Modify class Animal so that the data field stomach_contents stores a list of strings. In the
constructor, the new kind of stomach can be created in the following way

self.stomach_contents = []

The intention here is that when the feed() method is called, the given food (a string) is added
to the end of this list. A new object can be added to a list with the append() method.

This modification requires that the constructor and methods of the class operate in a slightly
different way. Method parameters, as well as the "main program" will remain unchanged.

When stomach contents is printed to the screen, the eaten strings should be read from the list.
Strings stored in a list can be printed with a loop such as

list_of_strings = ["first", "second", "third"]

for string_to_print in list_of_strings :

 print string_to_print

10 © Kari Laitinen

The file ISODate.py contains a class named ISODate that can be used to make various
calculations related to dates. This class is used in the programs Columbus.py, Birthdays.py,
and Friday13.py.

The ISODate class handles date information in the so called ISO format, which means that
dates are printed in format YYYY-MM-DD. (ISO is an abbreviation for International
Organization for Standardization.)

Exercise 1:

Write a program that calculates your current age in years, months, and days. You can
accomplish this when you first create ISODate objects in the following way

my_birhtday = ISODate(1977, 7, 14)

date_now = ISODate()

By studying program Columbus.py, you’ll find out how the time difference between two
ISODate objects can be calculated. You can also easily find out on which day of the week you
were born.

You can do this exercise so that you modify program Columbus.py. You should, however,
change the names in the program so that they reflect what you are calculating. You can use
the names given above.

EXERCISES WITH CLASS ISODate

11 © Kari Laitinen

Exercise 2:

Improve your program so that it prints a list of your most important birthdays and tells on
which day of week those birthdays occur. You should study program Birthdays.py to find out
how to do this.

Exercise 3:

In this exercise we’ll study how a class can inherit another class in Python. Programs
BankPolymorphic.py and Windows.py are examples in which inheritance is used.

Derive another class named AnotherDate from class ISODate. You can write the new
AnotherDate class before the "main program" after the import statements. The AnotherDate
class should be the same as class ISODate with the exception that it has an additional method
that begins as follows

 def to_anti_iso_format(self) :

 # Here begin the internal statements of the method

This method should return a string that contains the date in anti-ISO format which is
DD.MM.YYYY. You can create this method quite easily if you make of copy of method
__str__(self), and change its name and internal statements. With this method you should be
able to print dates in the following way

print "\n\n " + test_date.to_anti_iso_format()

Note that when you derive a new class from an existing class in Python, the constructor

12 © Kari Laitinen

method __init__(self) is also inherited. So you do not always need to write a constructor to a
derived class.

Exercise 4:

Improve your program so that it prints dates when you are 10000 and 20000 days old. The
age of a person is 10000 days, when his/her "conventional" age is approximately 27 years and
4 1/2 months. With this feature in your program, you’ll get new days for partying. This
feature can be programmed when you increment a day counter and an ISODate object inside
a loop, for example, in the following way.

day_counter = 0
date_to_increment = ISODate(my_birthday)

while ... :

 day_counter += 1
 date_to_increment.increment()

 if ...

Exercise 5:

Improve your program so that it tells when you are 1000000000 seconds old. Also this
feature can be programmed so that you count days starting from your birthday. Each day has
24 * 60 * 60 seconds. 1000000000 seconds will be reached some time after you are 31 years
old. Your program should print your age in years, months, and days on the day when you are
1000000000 seconds old. Again you’ll have one more day to celebrate!

13 © Kari Laitinen

With these exercises we’ll learn to use some drawing methods. You can do these exercises by
modifying program HelloQt.py.

Exercise 1:

Study program DrawingDemoQt.py and find out how to draw a square to the drawing area.

Exercise 2:

When you know how to draw a square, modify your program so that it draws a chessboard
that has 8 x 8 squares of which every second square is black and every second square is
white. You do not have to draw the white squares as they can be of the background color. To
draw the black squares, you should use loop(s).

You should draw a frame around the chessboard at the end.

Exercise 3:

Find out how to set drawing colors in PyQt applications.
Draw the "black" squares of the chessboard with red color and "white" squares with yellow
color. "White" squares can be drawn by first drawing a single large yellow square on which
you later draw the "black" squares.

First PyQt exercise: Drawing a Chessboard

14 © Kari Laitinen

Exercise 4:

Draw a black ball (circle filled with black color) in the square which is in the upper left
corner of the chessboard. The black ball represents a chess man on your chessboard. After
this exercise is completed, your chessboard should resemble the chessboard below.

15 © Kari Laitinen

Exercise 5:

Among the basic Python programs, you can find a program named MathDemo.py which
shows how to generate random numbers. Use random integers and put the "chess man" into a
random square on the chessboard. Always when the program window is "repainted" the black
ball should appear in a new random square.

Exercise 6:

Study the PyQt documentation and find out how the drawing color can be set by using
numerical RGB values. When you know how to do this, modify your program so that the two
chessboard colors, that have earlier been yellow and red, are replaced with random colors.

16 © Kari Laitinen

Exercise 1:

Now the program is such that the blinking ball stays approximately at the center of the
window. Modify the program so that the blinking ball starts moving gradually downwards.
Always when the ball becomes visible after it had disappeared, it should be located a few
pixels below its previous position. You should control that the y coordinate of the ball will not
grow too large, so that the ball disappears entirely. After the ball has reached the bottom of
the window, it should remain there and continue blinking.

You can modify the ball coordinate in the paintEvent() method after you have drawn the ball
with the current coordinates.

Exercise 2:

Modify the program so that the ball starts moving gradually upwards after it has reached the
bottom of the window. After the ball has reached the top of the window, it should start
moving downwards again. The blinking ball should keep seesawing between the top and
bottom of the window. You should add the following data field (instance attribute) to the class
to control the ball movement:

self.moving_down = True

EXERCISES WITH PROGRAM AnimationDemoQt.py

17 © Kari Laitinen

This "variable" should be given value False when the ball starts moving upwards.

Exercise 3:

Modify the program so that it will move an image instead of a ball. By studying program
SinglePictureQt.py, you’ll find out how an image can be drawn as a QImage object.
Considering the following exercise, it is best to select an arrow image whose arrow points
down. Arrow images can be found at http://www.oamk.fi/~karil/images/arrow_images/

Exercise 4:

If you were able to find an image that shows an arrow, you should modify the program so that
the arrow points downwards when the image is moving downwards, and the arrow points
upwards when the image is moving upwards. You can make this with a QImage method with
which a mirrored version of an image can be created.

Exercise 5: (This may not be possible with QImage !!!!)

If you have an arrow image, you can modify the program so that the image travels around the
borders of the window, the arrow always pointing to the direction of the movement.

18 © Kari Laitinen

MouseDemoQt.py is a program that demonstrates how to react to the pressings of mouse
buttons, mouse movements, etc. in Python Qt programs. Study that program first, and modify
it as required in the following exercises.

Exercise 1:

Modify the program so that it will draw an image to the screen when it starts executing. You
can remove the program lines that perform the original drawing operations in the program.
By studying program SinglePictureQt.py you’ll find out how to draw images.

Exercise 2:

After your program is able to show a picture, improve it so that it is possible to "drag" the
picture with the mouse. The intention is that it should be possible to move the picture with the
left mouse button according to the following rules

• when the left mouse button is pressed down while the cursor is over the picture, the
movement operation begins, and the cursor coordinates are stored into data fields
(instance attributes) inside the class

• when the mouse is moved while the left mouse button is pressed down, the program
calculates how much the mouse moved, and moves the picture accordingly

• when the left mouse button is released, the movement operation is complete, and the
picture stays in its final position

EXERCISES WITH PROGRAM MouseDemoQt.py

19 © Kari Laitinen

The following data field (instance attribute) might be useful in your program.

self.picture_is_being_moved = False

This could get the value True while the picture is being moved. With this kind of data field it
is easy to control the situation when the mouse button is pressed down outside the picture
area and released inside the picture area.

The following source program lines could be used to check whether a clicked point is inside
the area of a picture:

 def mousePressEvent(self, event) :

 current_mouse_position_x = event.x()
 current_mouse_position_y = event.y()

 if current_mouse_position_x > self.picture_position_x and \
 current_mouse_position_x < self.picture_position_x + self.picture_width and \
 current_mouse_position_y > self.picture_position_y and \
 current_mouse_position_y < self.picture_position_y + self.picture_height :

 # The picture area was clicked.

20 © Kari Laitinen

Exercise 3:

Modify the program further so that a slightly darkened version of the picture will be
displayed while it is being moved. This small modification will most likely improve the user
experience. This can be achieved by drawing a rectangle over the picture with an almost-
transparent dark color.

Exercise 4:

Modify the program so that it will be possible to use the right mouse button on alter the size
of the shown picture. When the right mouse button is pressed down while the cursor is inside
the picture area, the size of the picture should grow a little bit. If the Ctrl key is pressed down
while the right mouse button is used, the size of the picture should be decreased.

The QImage class provides a method to create an enlargened or shrinked version of an image.
However, it may be better to control the picture size programmatically so that the class has
data members which store the desired picture size. The drawImage() method of the QPainter
class can then be used to draw the image by using the desired size.

21 © Kari Laitinen

FlagsQt.py is an example program that has been constructed in an object-oriented way, using
several classes. It demonstrates the use of the QTabWidget class with which it is possible to
construct a UI that consists of several tabbed pages or tabbed widgets.

Exercise 1:

Add a new flag to one of the tabbed pages, which are FlagPanel objects in FlagsQt.py. The
new flag can be a flag of a fictitious country. For example, the flag of Absurdistan might have
all rainbow colors as vertical stripes. Such a flag can be easily constructed by using the
VerticalStripesFlag class.

Exercise 2:

Add a new tabbed page "Fictitious" to the UI. This new page can be created in the same way
as the other pages are created, using the class FlagPanel. You should add the new flag that
you created in the previous exercise to the new page.

It is possible that the program will not work if no flags are added to the new FlagPanel.

EXERCISES WITH PROGRAM FlagsQt.py

22 © Kari Laitinen

Exercise 3:

In the FlagsQt.py program, class Flag serves as a superclass for several subclasses whose
objects represent flags in a certain category. The hierarchy of classes is the following.

Each subclass has its own draw() method that is able to draw the flag represented by the class.
A correct draw() method is automatically selected for each flag object that is stored in a list of
flag objects.

In this exercise you should derive a new class from class Flag. The name of the new class
might be BallFlag as its objects should represent flags that have a ball shape in the middle of
the flag. For example, the flag of Japan has a red ball on white background, and the flag of
Bangladesh has a reddish ball on green background. The draw() method of the new class
should be able to draw a ball in the middle of the flag background. (You can use the flag of
Bangladesh as an example here, although officially the ball in the Bangladesh flag is not
exactly in the middle of the flag.) To test your new class, you should add BallFlag objects to
your program.

 Flag

VerticalStripesFlag HorizontalStripesFlag CrossFlag

23 © Kari Laitinen

Exercise 4:

In this exercise you should derive a yet new class from the Flag class. The name of the new
class might be SingleStarFlag as the new class should represent flags that have a single five-
pointed star in the middle of the flag. The flags of Vietnam, Somalia, and Morocco are like
this, although the star in these flags is not necessarily of the same size.

To draw the star shape you should use the QPainterPath class which is used, for example, in
program StarsQt.py. Actually, the StarsQt.py program already has a class named StarShape5
that represents a five-pointed star. The star of your SingleStarFlag class can be defined as an
object, and it can be drawn by using the draw() method in the StarShape5 class. You can use
the StarShape5 class in StarsQt.py, if you first copy the file StarsQt.py to the same folder
where your program is, and then use the following import statement in your program:

from StarsQt import StarShape5

Again, you need to create SingleStarFlag objects in order to test the new feature of your
program.

Exercise 5:

A nice improvement in this program might be a FlagDesignPanel that could be added to the
QTabWidget in the same way as FlagPanel objects are added. With the FlagDesignPanel one
could design new flags. Consult the teacher if you would like to make such a panel to your
program.

