
555

APPENDIX A: SUMMARY OF IMPORTANT JAVA FEATURES

A - 1: Literals

Literals Explanation

’A’ (means 65 or 0x41)
’0’ (means 48 or 0x30)
’1’ (means 49 or 0x31)
’a’ (means 97 or 0x61)

Character literals (i.e., literals of type char) are written within single
quotation marks. A character literal like ’A’ means the numerical value
65.

’\n’ (newline, 0x0A)
’\b’ (backspace, 0x08)
’\r’ (carriage return, 0x0D)
’\\’ (backslash, 0x5C)
’\"’ (double quote, 0x22)
’\’’ (single quote, 0x27)
’\t’ (tab, 0x09)
’\0’ (NULL, 0x00)
’\u0041’(means ’A’)

Special character literals are written by utilizing a so-called escape
character, the backslash \. When a backslash precedes a symbol, the
compiler realizes that the symbol denotes something other than the
usual meaning of the symbol. With the prefix \u it is possible to give the
hexadecimal Unicode character code of a character.

123 (means 0x7B)
257 (means 0x101)
0x31 (means 49 or ’1’)
0x41 (means 65)
0xFFFF (means 65535)
123L (a long literal)

Integer literals can be written in different numbering systems. Prefix 0x
(or alternatively 0X) identifies hexadecimal literals. The compiler rec-
ognizes numerical literals on the basis that they always begin with a
numerical symbol. An integer literal like 123 can be assigned to all
types of integral variables. The compiler issues an error message if a lit-
eral is too large to fit into a variable. The letter L at the end of an integer
literal makes it a literal of type long. Java does not have binary literals.

23.45 (means 2345e-2)
2.345 (means 2345e-3)
2.998e8 (means 299800000)
3.445e-2 (means 0.03445)
34.45e-3 (means 0.03445)
34.45e-3F (float literal)
2.998e8F (float literal)

Floating-point literals that can be stored in variables of type float and
double can be expressed either in decimal or exponential (scientific)
notation. The decimal point is symbolized by . (the full stop). The
comma (,) is not used in floating-point literals. Floating-point literals of
type float must have an F (or alternatively an f) at the end.

"ABCDE" (Length is 5)
"\nABCDE" (Length is 6)
"\nABCDE." (Length is 7)
"\n\"ABCDE.\"" (Length is 9)
"\n\n\n\n" (Length is 4)
"\\ABCDE\\" (Length is 7)

String literals are written with double quote characters. A string literal
can be used to create an object of type String. Special characters can
be included in string literals by using the same escape mechanism as is
used in the case of character literals.

false
true

Literals of type boolean are the two words true and false.

null The keyword null means that no object is being referenced. This word
can be assigned as a value to object references. null is the default value
when object references are fields of a class or array elements.

These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. For more information, please visit
http://www.naturalprogramming.com/javabook.html

556 Appendix A: Summary of important Java features

A - 2: Variables, constants, and arrays of basic types

Declarations Examples

Variable declarations

The built-in variable types of
Java are byte, char, short,
int, long, float, double,
and boolean. The storage
capacities of different built-in
variable types are shown in
Table 5-1.

 char character_from_keyboard ;
 short given_small_integer ;
 int integer_from_keyboard ;
 long multiplication_result ;

When variables are used as local variables inside methods, they must be assigned values
before they can be used. When variables are used as fields of classes, they are automati-
cally assigned zero values. (boolean fields and fields that are object references are auto-
matically assigned values false and null, respectively.)

Initialized variables char user_selection = ’?’ ;
 byte mask_for_most_significant_bit = (byte) 0x80 ;
 int character_index = 0 ;
 int bit_mask = 0x80000000 ;
 long speed_of_light = 299793000L ;
 float kilometers_to_miles = 1.6093F ;
 double value_of_pi = 3.14159 ;
 boolean text_has_been_modified = false ;

Constant declarations

Constants are "variables"
whose values cannot be
changed.

 final int LENGTH_OF_NORMAL_YEAR = 365 ;
 final int LENGTH_OF_LEAP_YEAR = 366 ;

 final double LENGTH_OF_YEAR_IN_SECONDS = 31558149.5 ;
 final float EXACT_LENGTH_OF_YEAR_IN_DAYS = 365.256F ;

Array declarations and cre-
ations

 char[] array_of_characters ;
 array_of_characters = new char[50] ;
 int[] array_of_integers = new int[60] ;
 int[] integers_to_power_of_two =
 { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121 } ;
 int[] two_to_power_of_integer =
 { 1, 2, 4, 8, 16, 0x20, 0x40, 0x80, 0x100 } ;
 char[] hexadecimal_digits =
 { '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' } ;
 double[] pi_times_integer =
 { 0, 3.1416, 6.2832, 9.4248, 12.5664 } ;
 float[] centimeters_to_inches =
 { 0, 0.3937F, 0.7874F, 1.1811F, 1.5748F, 1.9685F};

 int[][] some_two_dimensional_array = new int[5][9] ;

If an array is created so that it is not initialized with values listed inside braces, array ele-
ments are automatically initialized with zeroes. The elements of an array of type bool-
ean[] are automatically initialized with false. Arrays containing object references are
initialized with null.

557

A - 3: String objects, other objects, and arrays of objects

Declaration Examples

String declarations and
creations

 String some_string ; // declares a string reference
 String another_string = "" ; // an empty string
 String third_string = "text inside string object" ;

 char[] some_letters = { 'K', 'a', 'r', 'i' } ;
 String some_name = new String(some_letters) ;
 String some_copied_string = new String(some_name) ;

Object references and cre-
ations

 ClassName object_name ; // declares an object reference
 object_name = new ClassName(...) ; // object creation

 Date first_day_of_this_millennium = new Date(1, 1, 2000) ;
 Date last_day_of_this_millennium = new Date("12/31/2999") ;

 Object anything ; // This can reference any object

Arrays of objects An array of objects is actually an array of object references. Right after its creation, the ele-
ments of an array of objects contain null references.

 String[] any_array_of_strings ;

 String[] array_of_strings = new String[9] ;
 array_of_strings[0] = "some text line" ;
 array_of_strings[1] = "another text line" ;
 ...

 // The following is an initialized array of strings
 String[] largest_moons_of_jupiter =
 { "Io", "Ganymede", "Europa", "Callisto" } ;

 Date[] days_of_this_millennium = new Date[365243] ;
 days_of_this_millennium[0] = new Date(1, 1, 2000) ;
 days_of_this_millennium[1] = new Date(2, 1, 2000) ;
 days_of_this_millennium[2] = new Date(3, 1, 2000) ;
 ...

 SomeClass[] array_of_objects = new SomeClass[10] ;
 array_of_objects[0] = new SomeClass(...) ;
 array_of_objects[1] = new SomeClass(...) ;
 ...

558 Appendix A: Summary of important Java features

A - 4: Expressions

The word "expression" is an important term when speaking about the grammars of pro-
gramming languages. The following are examples of valid Java expressions:

1
254
true
some_variable
some_variable + 3
(some_variable * another_variable)
(first_variable + second_variable) / third_variable
some_array[3]
array_of_objects[object_index]
some_string.length()
some_object.some_method()
some_object.SOME_STATIC_CONSTANT

You can see that literals, references to variables, mathematical calculations, refer-
ences to objects in arrays, method calls, etc. are all expressions in Java. Expressions are
parts of larger program constructs such as assignment statements, if constructs and loops.
Expressions obtain some values when a program is being executed. When an expression
represents a mathematical operation, we can say that it is a mathematical or arithmetic
expression. Expressions that get the values true or false are boolean expressions.

By using the term expression it is easy to speak, for example, about the operators of
a programming language. The use of the addition operator (+) can be specified

expression + expression

which can mean, for example, all the following expressions

some_variable + 254
some_variable + another_variable
some_variable + some_string.length()
33 + array_of_integers[integer_index]

A - 5: Assignments and left-side expressions

When you put the assignment statement

1 = 1 ;

in a program, the compiler considers it as an error and says something like "unexpected
type; required: variable; found: value" The above statement tries to assign a value to a lit-
eral, and that is not possible. I use the term "left-side expressions" to refer to expressions
that are allowed on the left side of an assignment operation. A literal or a method call are
not left-side expressions. Typical left-side expressions are variables, object references, ref-
erences to public fields of objects, and indexed positions of arrays. The following kinds of
assignment statements are thus possible

some_variable = ...
some_object = ...
some_object.some_public_field = ...
array_of_integers = ...
array_of_integers[integer_index] = ...
array_of_integers[integer_index + 1] = ...
array_of_objects[object_index] = ...

559

A - 6: The most important Java operators in order of precedence

Symbol Operator name Notation Comments

.
[]
()

member selection
array indexing
method call

object_name.member_name
array_name[expression]
method_name(list of expressions)

All three operators
mentioned here have
the same, the highest,
precedence.

++
--
~
!
-
+
(Type)
new

increment
decrement
complement
not
unary minus
unary plus
type cast
object creation

left-side-expression ++
left-side-expression --
~ expression
! expression
- expression
+ expression
(Type) expression
new Type(list of expressions)

These unary operators
are right-to-left assco-
ciative. All other
operators, excluding
the assignment opera-
tors, are left-to-right
associative.

*
/
%

multiplication
division
remainder

expression * expression
expression / expression
expression % expression

Arithmetic operators
(multiplicative).

+
-

addition
subtraction

expression + expression
expression - expression

Arithmetic operators
(additive).

<<
>>
>>>

shift left
shift right
shift right (zero fill)

expression << expression
expression >> expression
expression >>> expression

Bitwise shift opera-
tors.

<
<=
>
>=
instanceof

less than
less than or equal
greater than
greater than or equal
type compatibility

expression < expression
expression <= expression
expression > expression
expression >= expression
expression instanceof Type

Relational operators.

==
!=

equal
not equal

expression == expression
expression != expression

Relational operators
or equality operators.

& bitwise AND expression & expression

^ bitwise exclusive OR expression ^ expression

| bitwise OR expression | expression

&& (conditional) logical AND expression && expression

|| (conditional) logical OR expression || expression

=
+=
-=
*=
etc.

basic assignment

add and assigna

subtract and assign
multiply and assign
etc.

a. Operators +=, -=, *=, etc. work so that
some_variable += 3 ; means the same as
some_variable = some_variable + 3 ; and
some_variable *= another variable ; means the same as
some_variable = some_variable * another_variable ;

left-side-expression = expression
left-side-expression += expression
left-side-expression -= expression
left-side-expression *= expression
etc.

Assignment opera-
tors are right-to-left
associative. All arith-
metic operators and
most bit operators can
be combined with the
assignment operator
=.

560 Appendix A: Summary of important Java features

A - 7: Control structures to make decisions (selections)

Control structure Description

Simple if construct if (boolean expression)
{

One or more statements that will be executed if the boolean expression,
given in parentheses above, is true. These statements will not be
executed at all if the boolean expression is false (i.e. not true).

}

if-else construct if (boolean expression)
{

One or more statements that will be executed if the boolean expression,
given in parentheses above, is true.

}
else
{

One or more statements that will be executed if the boolean expression,
given in parentheses above, is false (i.e. not true).

}

if-else if ... construct if (boolean expression 1)
{

One or more statements that will be executed if and only if boolean
expression 1 is true.

}
else if (boolean expression 2)
{

One or more statements that will be executed if and only if boolean
expression 2 is true and boolean expression 1 is false.

}
else
{

One or more statements that will be executed if and only if neither
boolean expression 1 nor boolean expression 2 is true.

}

switch-case construct switch (arithmetic expression)
{
case v1:

Statements which will be executed if the arithmetic expression has
value v1

 break ;
case v2:

Statements which will be executed if the arithmetic expression has
value v2

 break ;
case vn:

Statements to be executed when the arithmetic expression has value vn

 break ;
default:

Statements which will be executed if none of the cases matched the
value of the arithmetic expression

 break ;
}

561

A - 8: Control structures to perform repetitions (iterations)

Control structure Description

while loop while (boolean expression)
{

One or more internal statements that will be repeatedly executed as long as
the boolean expression, given in parentheses above, is true.

}

do-while loop do
{

One or more statements that will be first executed once, and then
repeatedly executed as long as the boolean expression, given below in
parentheses, is true.

}
 while (boolean expression) ;

for loop for (assignment statement ;
 boolean expression ;
 increment or decrement statement)
{

One or more internal statements that will be repeatedly executed as long as
the boolean expression given above is true. When the boolean expression
becomes false, the statements that follow this for loop will be executed.

}

An index variable may be declared in a for loop in the following way

for (int some_index = 0 ;
 ...

The scope of this kind of variable is within the internal statements of the loop.

"foreach" loop for (Type object_name : collection_name)
{

One or more statements that will be executed for each object in the
collection. object_name refers to the object currently being processed,
and the loop automatically processes all objects of the collection. The
collection being processed can be a conventional array, an ArrayList
array, or some other kind of collection that implements the Iterable
interface.

}

562 Appendix A: Summary of important Java features

A - 9: Some basic Java method structures

Method type Example

A static method named main() is the
method that is invoked by the Java vir-
tual machine when an executable pro-
gram is run on a computer. It is
mandatory to declare a formal parameter
for the main() method. In this book, the
name of the parameter is not_in_use
when it is not used.

public static void main(String[] not_in_use)
{
 ...
}

The parameter that is supplied by the
operating system and the virtual
machine to method main() is an array
of strings that contains the data that is
supplied from the command line. In this
book, the parameter is named
command_line_parameters when it
is used by the main() method.

public static void main(
 String[] command_line_parameters)
{
 ...
}

A method that neither takes parameters
nor outputs a return value.

void method_name()
{
 ...
}

A method to which two parameters of
type int can be passed by value.

void method_name(int first_parameter,
 int second_parameter)
{
 ...
}

A method that takes two int values as
input parameters and returns an int
value with a return statement.

int method_name(int first_parameter,
 int second_parameter)
{
 int value_to_caller ;
 ...
 return value_to_caller ;
}

A method that takes an array of type
int[] as a parameter. When arrays and
other objects are passed as parameters,
an array reference or an object reference
is passed as a value to the called method.
Thus the called method and the caller
can access the same array or the same
object.

void method_name(int[] array_of_integers)
{
 ...
}

563

A - 10: String methods

Method endsWith() checks whether the
end of a string is a certain other string.

S o m e t e x t .

indexOf() returns the index of a sub-
string or the index of a character in a
string. If you want to know whether a
string contains a certain substring, you can
use the contains() method.

Method startsWith() checks whether a
string begins with a certain other string.
With method regionMatches() it is
possible to check if specified regions in
two strings are identical.

Method length() returns the
number of characters in a string.

toLowerCase() and
toUpperCase() are
methods to convert the
letters of a string either to
lowercase or uppercase
letters.

substring() returns a string that
consists of the characters in specified
adjacent character positions. Method
charAt() returns the character in a
specified index position.

Method replace() replaces all occurrences of a substring
with a specified replacement string, or all occurrences of a
character with a specified replacement character.

lastIndexOf() works like indexOf()
but it starts the search from the last char-
acter of the string.

The drawing on this page explains briefly many of
the string methods. To find a more accurate
description of the methods, please go to page 220.

Methods compareTo(),
compareToIgnore-

Case(), equals(), and
contentEquals() com-
pare strings.

String.format() is a very powerful
method for creating new strings.

564 Appendix A: Summary of important Java features

A - 11: Mechanisms for keyboard input and screen output

The mechanisms to output data to the screen and read data from the keyboard are
explained at the end of Chapter 5.

A - 12: Input/output from/to files

Activity How to make it happen?

To perform file operations in Java, the package java.io must be imported.

Open a text file for input BufferedReader input_file = new BufferedReader(
 new FileReader("filename.txt")) ;

Open a text file for output PrintWriter output_file = new PrintWriter(
 new FileWriter("filename.txt")) ;
PrintWriter growing_text_file = new PrintWriter(
 new FileWriter("append_here.txt", true)) ;

Check if file opened suc-
cessfully

An exception is thrown if file opening does not succeed. File operations must be carried out
by using a try-catch(-finally) construct.

Output text to text file output_file.println("This line goes to file") ;

Input text from text file String text_line_from_file = input_file.readLine() ;
readLine() returns a null when the end of file has been encountered.

Open a file in binary form
for reading

FileInputStream binary_input_file =
 new FileInputStream("important.data");

Open a file in binary form
for writing

FileOutputStream binary_output_file =
 new FileOutputStream("important.data") ;
FileOutputStream growing_binary_file = new
 FileOutputStream("important.data", true) ;

Read bytes from a binary
file

int number_of_bytes_actually_read =
 binary_input_file.read(array_of_bytes,
 array_position, // 0, 1, 2, ...
 desired_number_of_bytes) ;
int number_of_bytes_actually_read =
 binary_input_file.read(array_of_bytes) ;

Write bytes to a binary file binary_output_file.write(array_of_bytes,
 array_position, // 0, 1, 2, 3, ...
 number_of_bytes_to_write) ;
binary_output_file.write(array_of_bytes) ;

Close an open file input_file.close() ;
output_file.close() ;
binary_input_file.close() ;
binary_output_file.close() ;

565

A - 13: Data conversions

Conversion mechanism How to use it?

Parsing methods Standard Java wrapper classes (e.g. Short, Integer, Long, Byte, Float, and Dou-
ble) provide static methods like parseShort(), parseInt(), parseLong(), etc.,
which can be used to parse a character string so that the string is converted to a
numerical type. A string can be converted to a double value in the following way

 String value_of_pi_as_string = "3.14159" ;
 double value_of_pi =
 Double.parseDouble(value_of_pi_as_string) ;

The parsing methods are useful, for example, when we want to convert a string that
contains a binary or a hexadecimal value. The statement

 System.out.print("\n " + Integer.parseInt("123")
 + " " + Integer.parseInt("1111011", 2)
 + " " + Integer.parseInt("7B", 16)) ;

would print

 123 123 123

toString() methods All Java classes have a method named toString() that can convert an object to a
string. A toString() method can be invoked for an object by calling it explicitly or
by using the string concatenation operator (+). The statement

 System.out.print("" + some_object) ;

would invoke a toString() method for the object referenced by some_object, and
print the string to the screen. Some of the above-mentioned standard wrapper classes
provide static methods like toBinaryString() and toHexString() with which it
is possible to convert numerical values to strings in which the numbering system is
not the decimal system. For example, the statements

 String hexadecimal_string = Integer.toHexString(33);
 System.out.print(hexadecimal_string) ;

would print 21 to the screen.

String.format() method The static String.format() method is a very powerful tool to convert numerical
values to strings. You have to use format specifiers like %d, %X, %f, etc., to make the
method perform the desired conversions. The conversion shown above can alterna-
tively be carried out with the statement

 String hexadecimal_string = String.format("%X", 33);

valueOf() methods The standard class String and the above-mentioned wrapper classes provide many
static valueOf() methods. For example, in the statement

 double value_of_pi =
 Double.valueOf(value_of_pi_as_string) ;

a string is first converted to a Double object and then unboxing takes place.

Casting operations Casting is a mechanism to temporarily convert a data item to another type. Casting is
usually used inside a larger statement. For example, the following statement converts
a value of type char to an int value before printing:

 System.out.print((int) some_character) ;

The above statement prints the character code of a character, not the character. Cast-
ing is required, for example, in assignment statements in which the value of a large
variable is stored in a small variable, e.g., when the value of a long variable is copied
to a variable of type int.

566 Appendix A: Summary of important Java features

A - 14: Java class declaration

All non-static and non-private methods of
Java classes can be polymorphic methods that
are overridden in lower classes. When a poly-
morphic method is called for an object, the cor-
rect version of the method that corresponds with
the object’s type is automatically selected. If you
want to prevent the overriding of a method, you
can declare it with the final keyword.

Keyword extends specifies that
another class is inherited. Key-
word implements specifies that
one or more interfaces are imple-
mented. A class can inherit from
one superclass. It can implement
one or more interfaces.

class ClassName extends SuperclassName
 implements SomeInterfaceName, SomeOtherInterfaceName
{
 protected int some_field ;
 ...

 public ClassName()
 {
 ...
 }

 public int get_some_field()
 {
 return some_field ;
 }

 public void some_method(int some_parameter)
 {
 ...
 }

 public void some_other_method(...)
 {
 ...
 }

 public String toString()
 {
 ...
 return object_as_string ;
 }
}

There are many different possibilities to declare classes in
Java. Actually, all of Part III of this book is a long discussion
of the nature of Java classes. A class declaration is identified
with the reserved keyword class. If keyword public pre-
cedes the class keyword, the class is visible outside its
package. A package is a collection that can contain many
classes. Keyword abstract must be written before the
class keyword if the class contains one or more abstract
methods. If the final keyword precedes the class key-
word, it is not possible to derive new classes from the class.

Usually classes have several constructors. A construc-
tor has the same name as the class. A constructor is
called automatically when an object (instance) of a
class is created. A default constructor is one that can be
called without giving any parameters.

An accessor method is one that is
used to either read or write a field
of a class.

All classes have a method named toString()
because such a method is declared in class
Object that is the superclass of all Java
classes. If a class declaration does not contain
a toString() method, it is inherited from
class Object or from some other class in a
class hierarchy.

