
CHAPTER 3

HOW INFORMATION IS STORED IN THE MEMORY OF A
COMPUTER

Now, after having looked at a couple of computer programs, we know that it is possible to
declare variables inside programs, and it is possible to store numerical values into the
declared variables. When a program has been compiled and it is being run (executed) on a
computer, the variables are in the memory of the computer, or we can say that memory
space has been reserved to represent the variables of the program. Thus, the information
that is stored in a variable is actually stored in the memory of the computer.

This chapter discusses how it is possible for the electronic circuitry of computers to store
information, and how the memory of computers should be thought of by a programmer. A
computer's memory can be considered a logical device which is built using electronic
components. To understand how the memory in computers works, a programmer does not
necessarily need to understand electronics or memory technology. It is enough to under-
stand how the memory works in a logical sense.

In the following sections, we will study how different types of information (e.g. numbers,
texts, and pictures) can be stored in the memory of a computer. The memory is such that it
can hold information stored in a certain manner. The memory in a computer "remembers"
what was written to it. The memory of a computers is, however, fundamentally different
from human memory. Information stored in a computer's memory will be lost when some
other information is written in the same place in the memory. Moreover, there is always a
limit how much information a computer memory can hold.

© Copyright 2006-2013 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
als who want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in
a retrieval system or lend these pages in public or private libraries.
For more information about Kari Laitinen’s books, please visit
http://www.naturalprogramming.com/

32 Chapter 3: How information is stored in the memory of a computer

3.1 Numerical information: numbering systems

The most typical way of showing numerical information is to use the ten familiar numeri-
cal symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. With these symbols, it is possible to express any
number. There are certain rules how to combine these symbols to form larger numbers.
The numerical symbols are called digits when they appear in a larger number. For exam-
ple, number 6378 has four digits, 6 is called the most significant digit, and 8 is the least
significant digit.

Actually, it is quite amazing that with ten basic symbols it is possible to express a
countless number of values. We could ask: why exactly ten different numerical symbols?
Why not nine, or eleven, or three hundred, or one, or two? Probably the reason why we
use ten different symbols for counting is that we have ten fingers and ten toes. Our count-
ing system was invented by people who lived a long time ago, and they probably ended up
in a ten-symbol system after counting with their fingers. In any case, it is possible to for-
mulate a working numbering system for nearly any number of numerical symbols. We
shall see that computers use only two numerical symbols to represent and store numerical
information. To study different numbering systems, we must first take a closer look at our
commonly used numbers, the Arabic numbers.

With the ten different symbols, we can basically express only ten different quantities,
but our minds are accustomed to combine the ten numerical symbols in a sophisticated
manner. When we want to express larger numbers, we start thinking in terms of times of
ten. For example, the number 6378 is:

6 times 10 times 10 times 10 plus
3 times 10 times 10 plus
7 times 10 plus
8

By deciding that * means "times" (the multiplication operation), that + means "plus" (the
addition operation), and that multiplication operations are carried out before additions in
mathematics, we can express the number 6378 in a more mathematical way with the fol-
lowing expression

6 * 10 * 10 * 10 + 3 * 10 * 10 + 7 * 10 + 8

Furthermore, by deciding that 100 is 1, 101 is 10, 102 is 10 * 10, 103 is 10 * 10 * 10, etc.,
we can write the above expression even more elegantly, as follows:

6 * 103 + 3 * 102 + 7 * 101 + 8 * 100

In the mathematical expression above, it is important to note that ten to the power of zero
is considered to be one. In mathematics, any number to the power of zero is one. It is pos-
sible to express any number in our commonly used numbering system in the same way as
the number 6378 above. For example, the number 285024 can be expressed as

2 * 105 + 8 * 104 + 5 * 103 + 0 * 102 + 2 * 101 + 4 * 100

Because the Arabic numbering system has ten different symbols (0, 1, 2, 3, 4, 5, 6, 7,
8, and 9) to express numerical information, the number 10 is an important number in the
mathematical expressions above. As we have ten different numerical symbols in use, our
numbering system is said to be the base-10 numbering system.

The advantage of having such a numbering system as our base-10 system is that we
can concisely write down numerical information. We can understand how much is 299

3.1 Numerical information: numbering systems 33

without thinking that it is actually 2 * 102 + 9 * 101 + 9 * 100. We are so accustomed to
using the base-10 system that in everyday life we do not need any other numbering sys-
tems. However, to understand how information is stored in the memory of a computer, and
how computers process information, it is necessary to also know and understand other
numbering systems.

It is possible to formulate new numbering systems from the base-10 system by
removing the most significant numerical symbols from it. For example, we get a base-9
numbering system by leaving the symbol 9 out from the base-10 system. When we leave
both the symbols 9 and 8 out from the base-10 system, we get a base-8 numbering system
which is also called the octal numbering system. The most minimal numbering system is
the base-2 system which contains only two numerical symbols, 0 and 1. That is called the
binary numbering system. Another possibility to formulate new numbering systems is to
add new numerical symbols to the symbols of the base-10 system. For example, we get a
base-16 system by introducing six new numerical symbols A, B, C, D, E, and F to the
symbols of the base-10 system. The base-16 system is called the hexadecimal numbering
system.

Table 3-1 shows some numbers written down in different numbering systems. The
essential difference between different numbering systems is the number of numerical sym-
bols in use. By studying Table 3-1, you can see that whenever we count upwards and run
out of symbols (i.e. reach symbol 9 in the base-10 system, reach symbol 7 in the base-8
system, reach symbol 1 in the base-2 system, or reach symbol F in the base-16 system) we
start to use a new column of symbols, or we can say that we start to use a new digit which
has more significance. In all numbers, in all numbering systems, the column to the left
bears symbols of greater value, or more significant digits, and the rightmost digit of a
number is the least significant. All the numbering systems are basically similar. The only
fundamental difference is how many numerical symbols are in use.

Roman numbers

Our normal numbers are called Arabic numbers because they were introduced to Western Europe by Arabs who had
learned them in India. The Arabic numbering system and the numbering systems that can be derived from it are not
the only numbering systems in use these days. For example at the end of movies, the year when the movie was
made is often expressed with a so-called Roman number. The letters MCMXCVI at the end of a movie mean that
the movie was made in the year 1996. In the Roman numbering system, certain letters are used to denote certain
numerical quantities, and there are rules how the numerical letters can be combined to form bigger numbers. The
basic meanings of the numerical letters are the following:

I one V five
X ten L fifty
C one hundred D five hundred
M one thousand

The letters I, X, C, and M can be combined so that two or three consecutive letters represent two or three
times the value of that symbol (e.g. XX means twenty, XXX means thirty, C means one hundred, and CC means
two hundred). When a lower-valued letter precedes a higher-valued letter, the numerical meaning of the higher-val-
ued letter is reduced (e.g. XC means ninety, CM means nine hundred, IX means nine, and CD means four hundred).
Full-valued letter combinations and letters with decreased values can be combined to express various quantities. In
the Roman system, the numbers from one to twenty are I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV,
XVI, XVII, XVIII, XIX, and XX; 1234 is MCCXLVII; 333 is CCCXXXIII; and 444 is CDXLIV. It must be noted,
that there is no quantity "zero" in the Roman numbering system. For that reason, it is not mathematically conve-
nient and therefore it has been replaced by the Arabic system. When you learn more while reading this book, try to
write a program that can convert from Roman numbers to Arabic ones and vice versa.

34 Chapter 3: How information is stored in the memory of a computer

Table 3-1: Numbers expressed in different numbering systems.

Base-10
(decimal
numbers)

Base-8
(octal

numbers)

Base-2
(binary

numbers)

Base-16
(hexadecimal

numbers)

 0
 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
51
52
53
54
55

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D

3.1 Numerical information: numbering systems 35

Table 3-2: Important numbers in computing.

2n Decimal Hex 16(n/4) "slang"

20 1 1H 160

21 2 2H

22 4 4H

23 8 8H

24 16 10H 161

25 32 20H

26 64 40H

27 128 80H

28 256 100H 162

29 512 200H

210 1024 400H 1 k

211 2048 800H 2 k

212 4096 1000H 163 4 k

213 8192 2000H 8 k

214 16384 4000H 16 k

215 32768 8000H 32 k

216 65536 10000H 164 64 k

217 131072 20000H 128 k

218 262144 40000H 256 k

219 524288 80000H 512 k

220 1048576 100000H 165 1 M

221 2097152 200000H 2 M

222 4194304 400000H 4 M

223 8388608 800000H 8 M

224 16777216 1000000H 166 16 M

36 Chapter 3: How information is stored in the memory of a computer

Numbers in different numbering systems can be expressed using mathematical
expressions. For example, the base-8 number 40572 can be expressed as

4 * 84 + 0 * 83 + 5 * 82 + 7 * 81 + 2 * 80

The base-2 number 10110101B can be expressed as

1 * 27 + 0 * 26 + 1 * 25 + 1 * 24 + 0 * 23 + 1* 22 + 0 * 21 + 1 * 20

The base-16 number 85ADFH can be expressed as

8 * 164 + 5 * 163 + A* 162 + D * 161 + F * 160

The base number of the numbering system makes all the difference in the expressions
above. Remember that * means a multiplication operation. Note also the convention of
using the letter B at the end of a binary number to show that it is a binary number. Simi-
larly, the letter H at the end of a hexadecimal number is used to denote that the number is
of the hexadecimal numbering system. For base-8 octal numbers we do not have any spe-
cial letters, because we do not use base-8 often in this book. By using letters at the end of
numbers other than base-10 decimal numbers, we can write all numbers down without the
possibility of misunderstanding. For example, numbers 16H, 10110B, and 22 mean the
same.

The binary numbering system and the hexadecimal numbering system are important
in the world of computers. It is often necessary to make conversions between these num-
bering systems and our base-10 decimal system. To make the conversions easily, you
should buy a calculator which is capable of operating with binary and hexadecimal num-
bers. However, a computer specialist must be able to make the conversions by hand, if
necessary. At this phase of your becoming a computer specialist, it is good practice to
learn to make the conversions that will be explained below.

Conversions to the decimal system can be made by writing expressions like the ones
above. For example, 101011B can be converted to a decimal number in the following way

101011B = 1 * 25 + 0 * 24 + 1 * 23 + 0* 22 + 1 * 21 + 1 * 20

= 32 + 0 + 8 + 0 + 2 + 1
= 43.

Table 3-2 shows how much 20, 21, 22, 23, etc. is in the decimal system. That table is
therefore useful when making conversions like the one above. Converting a binary num-
ber to the decimal system is basically a matter of taking the correct numbers from the sec-
ond column of Table 3-2 and calculating the sum of these numbers.

Converting a hexadecimal number to the decimal system resembles the conversion
of binary numbers. For example, 3AF2H can be converted to a decimal number in the fol-
lowing way

3AF2H = 3 * 163 + A* 162 + F * 161 + 2 * 160

= 3 * 4096 + 10 * 256 + 15 * 16 + 2 * 1
= 12288 + 2560 + 240 + 2
= 15090.

In these kinds of conversions you can also exploit the important numbers shown in Table
3-2. And always remember that any number to the power of zero is one.

Conversions from the decimal system to the binary numbering system can be carried
out by performing subtraction operations with the "magical numbers" in the second col-

3.1 Numerical information: numbering systems 37

umn of Table 3-2. Those numbers are somewhat magical because, provided that new rows
are added to the table if necessary, any whole number (integer) can be expressed as the
sum of a set of numbers from the second column of the table. For example, let’s convert
the number 2841 to the binary system. Beforehand, we know that the result of the conver-
sion will be a series of 1s and 0s. We also know that the result begins with a 1 because
leading zeroes in numbers are insignificant (e.g. 001101B is the same as 1101B). The dec-
imal-to-binary conversion procedure is the following:

• Search for the largest number from the second column in Table 3-2 which can be
subtracted from the number being converted. In the case of 2841, 2048 is the larg-
est number that can be subtracted. Because 2048 is 2 to the power of 11, we can de-
duce that the binary number we are trying to construct has a 1 in the exponent
position 11, and the binary number has 12 digits. The number thus looks like

211 210 29 28 27 26 25 24 23 22 21 20

1 x x x x x x x x x x x

Now the rest of our task is to find out whether there is 0 or 1 in place of each x.

• Subtract the number found in the second column from the number being converted.
In our example case 2841 - 2048 makes 793.

• Moving upwards from the position found in Table 3-2, find the largest number that
can be subtracted from what is left from the original decimal number. In our exam-
ple case we go upwards from the exponent position 11 in the table, and search for a
number in the second column that can be subtracted from 793. We can see that
1024 in the exponent position 10 cannot be subtracted, but 512 in the exponent po-
sition 9 can be subtracted from 793. This means that there is a 0 in the exponent po-
sition 10 and a 1 in the exponent position 9, and the binary number now looks like

211 210 29 28 27 26 25 24 23 22 21 20

1 0 1 x x x x x x x x x

• Subtract the number found in the second column from what is left from the original
number. By calculating 793 - 512 we get 281.

• Continue going upwards in the second column of Table 3-2, searching for the larg-
est numbers that can be subtracted from what is currently left from the original dec-
imal number. Mark a 1 in those exponent positions where subtraction is possible
and carry out the subtraction. Mark a 0 to the exponent positions where no subtrac-
tion is possible. Stop the procedure when there is nothing left from the original
number, and mark a 0 to any remaining unsolved exponent positions. In our exam-
ple case we are searching for a number that can be subtracted from 281. The proce-
dure goes as follows

256 can subtract result is 25 binary digit is 1
128 cannot subtract binary digit is 0
64 cannot subtract binary digit is 0
32 cannot subtract binary digit is 0
16 can subtract result is 9 binary digit is 1
8 can subtract result is 1 binary digit is 1
4 cannot subtract binary digit is 0
2 cannot subtract binary digit is 0
1 can subtract result is 0 binary digit is 1

38 Chapter 3: How information is stored in the memory of a computer

The last binary digit, the least significant bit, in our example was 1 because it was
an odd number that was being converted. The final result of our conversion exam-
ple is

211 210 29 28 27 26 25 24 23 22 21 20

1 0 1 1 0 0 0 1 1 0 0 1

Making a decimal-to-binary conversion needs a little bit of work if you do it by hand
(and brains), but converting between hexadecimal and binary numbers is an easier thing to
do. One reason why hexadecimal numbers are loved so much by computing specialists is
that it is very easy to convert a binary number to a hexadecimal number and vice versa.
The relationship between binary numbers and hexadecimal numbers is such that four bits
(binary digits) in a binary number correspond directly to a single digit in the same number
in the hexadecimal form. Therefore, a binary number can be converted to a hexadecimal
number in groups of four bits. Figure 3-1 shows how binary number 10101101101100B
can be converted to a hexadecimal number. By applying the procedure described in Figure
3-1 in the reverse sense, it is possible to make hexadecimal-to-binary conversions. For
example hexadecimal number 6F1DH is 0110111100011101B because 6H is 0110B, FH is
1111B, 1H is 0001B, and DH is 1101B.

Figure 3-1. Converting 10101101101100B to a hexadecimal number.

0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 B

By starting from the least significant
bits of the binary number, the bits are
grouped into groups of four bits.

If there are not enough bits to make a
group of four bits from the most signifi-
cant bits, leading zeroes are added to
the beginning of the number.

 BIN HEX

 0000 0
 0001 1
 0010 2
 0011 3
 0100 4
 0101 5
 0110 6
 0111 7
 1000 8
 1001 9
 1010 A
 1011 B
 1100 C
 1101 D
 1110 E
 1111 F

2 B 6 C H
By using the table on the left,
each group of four bits is con-
verted independently to a sin-
gle hexadecimal digit.

3.1 Numerical information: numbering systems 39

The "slang" column of Table 3-2 may require some explanation. When speaking
about things in the world of computers, we often need to speak about large numbers. It is a
nice coincidence of the binary numbering system and the decimal numbering system that
numbers 1024 and 1000, as well as numbers 1048576 and 1000000 are so close to each
other. On the other hand, the word kilo (k) means 1000 times something and Mega (M)
means 1000000 times something. Outside the world of computers it is usual to say 1 kilo-
meter to mean 1000 meters, or 1 Megaton to mean 1000000 tons. Therefore, it has become
customary to say, for example,

64 kilobits (kb) to mean 65 536 bits,
1 Megabit (Mb) to mean 1 048 576 bits, and
8 Megabytes (MB) to mean 8 388 608 bytes.

Conventions for writing hexadecimal numbers

Hexadecimal numbers are expressed by using the normal numerical symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and six
additional numerical symbols A, B, C, D, E, and F. To indicate that a number is a hexadecimal number, it is com-
mon to add the letter H at the end of the number. These are not, however, the only conventions. Another commonly
used notation is to use the prefix 0x, a zero and letter x, to indicate that a number is a hexadecimal number. The
additional hexadecimal symbols may also be written as lowercase letters a, b, c, d, e, and f. Thus we have the fol-
lowing four different possibilities to write hexadecimal numbers:

 DECIMAL HEXADECIMAL HEXADECIMAL HEXADECIMAL HEXADECIMAL

 22 16H 16H 0x16 0x16
 31 1FH 1fH 0x1F 0x1f
 254 FEH feH 0xFE 0xfe
 15090 3AF2H 3af2H 0x3AF2 0x3af2
 55236 D7C4H d7c4H 0xD7C4 0xd7c4

Exercises related to numbering systems

In the exercises below you should do the conversions manually as described in this section. You can verify your
answers with a calculator which is capable of handling binary and hexadecimal numbers.

Exercise 3-1. Convert the binary numbers 10111010B and 101010110110B to decimal numbers and hexadec-
imal numbers.

Exercise 3-2. Convert the hexadecimal numbers AF21H and B29DH to binary numbers and decimal num-
bers.

Exercise 3-3. Convert the decimal numbers 1234 and 5678 first to binary numbers. Convert then the binary
numbers to hexadecimal numbers.

40 Chapter 3: How information is stored in the memory of a computer

3.2 Numerical information: the binary world of computers

Now you have learned that numerical information can be expressed in different ways. We
are accustomed to using decimal numbers in our everyday life, but it is the binary number-
ing system that is THE numbering system in the world of computers. The binary numbers
can be written with only two symbols, 0 and 1, but they are equally as adequate numbers
as our common decimal numbers. Everything that can be written down as a decimal num-
ber can also be expressed as a binary number.

Binary numbers are convenient for computers because they need only two symbols.
Binary numbers can be stored in the memory of computers in the form of electric phenom-
ena. For example, a voltage present in a certain part of an electronic component can mean
the binary 1. No voltage present can then mean a binary 0, and thereby we have all binary
symbols expressed in electric form.

The most important electronic components inside modern computers are integrated
circuits, the black components on greenish boards. Integrated circuits contain many tran-
sistors that are connected to each other in a special way. Transistors are the basic elec-
tronic elements inside integrated circuits. A single integrated circuit may contain
thousands if not millions of transistors. The transistors inside integrated circuits are used
to store information in binary form. By setting a voltage to a certain wire it is possible to
store binary information into an integrated circuit, and by setting a voltage to another wire,
it is possible to read the previously stored binary information.

Although computers are rather complex electronic constructions, a person who
wants to write programs to be run on computers does not have to understand all the elec-
tronic details of computers. A programmer needs merely a logical view of a computer's
electronics. A computer can be considered a device that contains very many logical mem-
ory cells which are able to store one bit of information. The memory cells are made of
transistors. A bit (binary digit) is the smallest unit of information inside a computer. A
memory cell which can hold a bit of information can contain a zero (0) or one (1). The key
idea in electronic computing is that, although information is stored in small bits, it is pos-
sible to handle large amounts of information when there are very many of these single-bit
memory cells.

Figure 3-2 shows a simple memory cell which is capable of storing one bit of infor-
mation. The memory cell operates with a voltage of +5V and it has lines (wires) for writ-
ing and reading information. The information that can be stored is either 0 or 1. We can
assume that zero Volts means 0 and +5 Volts means 1. The memory cell is capable of hold-
ing the voltage that has been stored in it, and it simply outputs a voltage of 0V or +5V
depending on which of these two voltages has been stored in the memory cell. Information
can be stored in the memory cell by switching a voltage of +5V to the WRITE MEMORY
line and simultaneously setting the INPUT line to the voltage that represents the informa-
tion which is being stored. Information can be read from the memory cell by switching a
voltage of +5V to the READ MEMORY line. As long as the READ MEMORY line has an
active voltage of +5V, the OUTPUT line has the voltage (0V or +5V) that has previously
been stored in the memory cell. The lines WRITE MEMORY and READ MEMORY are
control signals which are used to transfer information to or from the memory cell. The
actual data transfer occurs via the INPUT and OUTPUT lines. The GROUND line is the
basis for which all voltages are measured. The line that connects the memory cell to the
operating voltage is also marked in Figure 3-2, though that line does not affect the logical
operation of the cell.

Figure 3-3 shows a timing diagram that describes the operation of the single-bit
memory cell. It is assumed that the memory cell is somewhere among the other electronic
circuitry and the outside circuitry changes the voltages on the lines that are connected to
the memory cell. Note that the line OUTPUT has a defined voltage only when the line
READ MEMORY has a voltage with which the memory cell is ordered to deliver its con-
tents to the outside world.

3.2 Numerical information: the binary world of computers 41

Figure 3-2. A logical model of a single-bit memory cell.

READ MEMORY

WRITE MEMORY

INPUT OUTPUT

+ 5 V operating voltage

 Single-bit

MEMORY CELL

GROUND (0 V)

Figure 3-3. Writing and reading a single-bit memory cell.

READ MEMORY

WRITE MEMORY

INPUT

OUTPUT

��������
��������
��������
��������

��������
��������
��������
��������

���
���
���
���

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

Memory cell content

We assume that time goes from left to right, all lines
(signals) have 0V (zero Volts) in the beginning, and
somebody starts altering the voltages of the lines. Here
the line WRITE MEMORY goes from value 0V to
+5V which results in that the voltage 0V which is in
the line INPUT is stored in the memory cell.

Here the line WRITE MEMORY goes up again
for a short while which results in that a 0 is again
written to the memory cell. Before this moment
the content of the memory cell was 1. The voltage
of the line WRITE MEMORY does not affect the
voltage in the line OUTPUT.

0 1 0

42 Chapter 3: How information is stored in the memory of a computer

Memory cells are called flip-flops in the literature of digital electronics. The memory
cells that exist in the integrated circuits in computers are not necessarily exactly like the
logical model in Figure 3-2 where 0V means the binary number 0 and +5V means the
binary number 1. In practice, the electronic circuits can be constructed so that zero voltage
means 1 and non-zero voltage means 0. Practical memory cells may also operate with dif-
ferent voltages and control signals may be different. However, it is most important to
know how a memory cell of a computer operates in the logical sense, and that is shown in
figures 3-2 and 3-3.

Although memory cells such as the one in Figure 3-2. cannot store more than one bit
of information (0 or 1), these kinds of memory cells are useful in computer electronics
when we connect many of these memory cells together. Present technology allows mil-
lions of these single-bit memory cells to be constructed on a single integrated circuit chip.
Figure 3-4 shows the principle how single bit memory cells can be connected together.
Figure 3-4 has eight input lines (INPUT7, INPUT6, ... , INPUT1, and INPUT0) which can
be activated or controlled with a single WRITE MEMORY signal, and it has eight output
lines (OUTPUT7, OUTPUT6, ... , OUTPUT1, and OUTPUT0) which are controlled with
only one READ MEMORY signal. Each of the eight memory cells in Figure 3-4 works in
the same way as the memory cell in Figure 3-2. We could, for example, connect the fol-
lowing voltages to the electric lines in Figure 3-4:

 WRITE
INPUT7 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 INPUT0 MEMORY

 0V +5V +5V 0V +5V +5V 0V +5V +5V

After setting the input lines and line WRITE MEMORY to these voltages, the volt-
ages in the input lines would be stored in the eight memory cells. Supposing that +5V
means 1 and 0V means 0, we can say that by having stored the above voltages, we have
actually stored the binary number 01101101B into the memory cells. The key idea here is
that numeric information is stored in the form of electronic voltages, and the input lines
correspond to bits in a binary number. The numbers of the input lines in Figure 3-4 are the
exponents needed in the conversions of binary numbers. With the eight memory cells in
Figure 3-4 it is possible to store decimal numbers from 0 to 255 by setting the input volt-
ages in the following way:

 I I I I I I I I
 N N N N N N N N
 P P P P P P P P
 U U U U U U U U
 T T T T T T T T BINARY DECIMAL
 7 6 5 4 3 2 1 0 NUMBER NUMBER

 0V OV 0V OV 0V OV 0V OV 00000000 0
 0V 0V 0V 0V 0V 0V 0V +5V 00000001 1
 0V 0V 0V 0V 0V 0V +5V 0V 00000010 2
 0V 0V 0V 0V 0V 0V +5V +5V 00000011 3
 0V 0V 0V 0V 0V +5V 0V 0V 00000100 4
 0V 0V 0V 0V 0V +5V 0V +5V 00000101 5
 0V 0V 0V 0V 0V +5V +5V 0V 00000110 6
 0V 0V 0V 0V 0V +5V +5V +5V 00000111 7

+5V +5V +5V +5V +5V 0V +5V +5V 11111011 251
+5V +5V +5V +5V +5V +5V 0V 0V 11111100 252
+5V +5V +5V +5V +5V +5V 0V +5V 11111101 253
+5V +5V +5V +5V +5V +5V +5V 0V 11111110 254
+5V +5V +5V +5V +5V +5V +5V +5V 11111111 255

3.2 Numerical information: the binary world of computers 43

F
ig

ur
e

3-
4.

 E
ig

ht
 s

in
gl

e-
bi

t m
em

or
y

ce
lls

 c
on

ne
ct

ed
 in

 p
ar

al
le

l.

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

7 +
 5

 V

O
U

T
P

U
T

7

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

6 +
 5

 V

O
U

T
P

U
T

6

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

5 +
 5

 V

O
U

T
P

U
T

5

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

4 +
 5

 V

O
U

T
P

U
T

4

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

3 +
 5

 V

O
U

T
P

U
T

3

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

2 +
 5

 V

O
U

T
P

U
T

2

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

1 +
 5

 V

O
U

T
P

U
T

1

1
-
b
i
t

m
e
m
o
r
y

c
e
l
l

IN
P

U
T

0 +
 5

 V

O
U

T
P

U
T

0

R
E

A
D

 M
E

M
O

R
Y

W
R

IT
E

 M
E

M
O

R
Y

44 Chapter 3: How information is stored in the memory of a computer

The configuration in Figure 3-4 can be called an 8-bit memory cell which means that
8 bits of binary information can be stored in it. With 8 bits it is possible to express 256 (2
to the power of 8) different numbers (i.e. the numbers from 0 to 255). It is easy to imagine
that even larger numbers than 255 could be stored in the memories of computers by con-
necting more single-bit memory cells in parallel. For example, when 16 single-bit memory
cells are connected in parallel, we get a 16-bit memory cell which allows the numbers
from 0 to 65535 to be stored. The decimal number 65535 is 1111111111111111B (sixteen
ones). Into a 16-bit memory cell it is possible to store 16 bits of information, and 65536
different numbers can be expressed with 16 bits. The largest number that can be stored in
a memory cell is 2 to the power of the width of the memory cell minus one. Therefore

• the largest number in a single-bit memory cell is 21 - 1 = 1,

• the largest number in a 8-bit memory cell is 28 - 1 = 255, and

• the largest number in a 16-bit memory cell is 216 - 1 = 65535.

In computing, eight bits of information is called a byte. The memory cell shown in
Figure 3-4 is thus a one-byte memory cell. A byte is an important unit of information.
Bytes are used to describe how much information can be stored in the memory of comput-
ers. For example, an old advertisement of computers might have said that "these comput-
ers contain 8 MB of main memory". Eight Megabytes (MB) means that 8 388 608 bytes of
information can be stored in this type of memory. 8 Megabytes is 8 x 8 388 608 = 67 108
864 bits, which means that this kind of memory consists of 67 108 864 single-bit memory
cells, such as the one in Figure 3-2.

When we write computer programs, we use one-byte memory cells like the one in
Figure 3-4. Programming languages provide mechanisms for how memory can be
reserved and used within computer programs. For example, the Java source program line

int some_integer_variable ;

declares a variable named some_integer_variable and reserves four bytes (32 bits) of
memory for the variable. The four bytes are treated like a single 32-bit memory cell which
can hold an integer value, and the variable name some_integer_variable can be used
to refer to the 32-bit memory cell. The Java program statement

some_integer_variable = 88 ;

writes the integer value 88 to the 32-bit memory cell. We can use these kinds of statements
in a program without knowing exactly where those four bytes, the 32-bit memory cell, are
located in the computer's main memory. All we need to know is that those four bytes are
really reserved, and they can hold a value that is written to them.

The memory cells, whose logical operation is described above, are used, for exam-
ple, to construct the main memory of a computer. There are also other technologies to con-
struct computer memory. These include magnetic memory like a hard disk and optical
memory like that of CDs. Regardless of the technology on which a memory device is
based, the mechanism for storing information is the same: information can be stored only
as bits, zeroes and ones. The memory cell technology is, though, the most important in the
operation of a computer. When you understand the logical operation of a memory cell, it
will be easier to understand the logical operation of a computer in Chapter 4.

3.3 Textual information: character coding systems 45

3.3 Textual information: character coding systems

Information is stored in the memory of computers as zeroes and ones. We learned this in
the previous section, and, in fact, this is the most important thing to be learned about how
computers store information. There is nothing else but zeroes and ones, represented by two
voltage levels, in the memory of computers. Zeroes and ones are convenient when we
want to store numerical information, but these two digits can also be used to store other
types of information, such as various texts.

When we want to store a number, say 123, in a computer's memory, we can store it in
binary form. 123 is 1111011B as a binary number. Since 1111011B consists of seven
binary digits, a one-byte memory cell such as the one in Figure 3-4 is sufficient for storing
this number. When larger numbers need to be stored, several bytes of memory can be used.

It is not difficult to store whole numbers in a computer memory since these numbers
can be expressed clearly in binary form. But when we want to store text in a computer’s
memory, the situation becomes somewhat more complicated. Because computer memories
can only store zeroes and ones, there has to be a way to code textual information to zeroes
and ones. A traditional coding system for textual information is the ASCII coding system.
ASCII is an acronym of "American Standard Code for Information Interchange". The
ASCII coding system is an agreement made by organizations working in the computing
business. As its name implies, the coding system was developed in the United States
where the commercial use of computers began.

There are ASCII character codes for all those textual symbols that can be found on
the keyboard of a computer. The ASCII coding system is based on the idea that each letter
or symbol must fit in one byte of memory. Because one byte is 8 bits, there can be 256 dif-
ferent character codes. 256 different codes is sufficient to represent all uppercase English
letters (A, B, C, etc.), all lowercase English letters (a, b, c, etc.), all decimal numerical
symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9), many special printable characters (!, ", #, $, %, &,
', (,), -, /, etc.), and many non-English letters and special symbols (Ä, Ö, å, etc.).

At the end of this book on page 594 you can find a table which lists the first 128 most
commonly used ASCII character codes. You can see, for example, that the code for the let-
ter A is 41H (0100 0001 binary, 65 decimal), and the code for the plus sign + is 2BH (0010
1011 binary, 43 decimal). By carefully studying the table you can find out the following
facts about the ASCII coding system:

• The codes from 30H to 39H are reserved for numerical symbols from 0 to 9.

• The codes from 41H to 5AH are reserved for uppercase letters from A to Z.

• The codes from 61H to 7AH are reserved for lowercase letters from a to z.

• You get the code for a lowercase letter by adding 20H to the code of the corre-
sponding uppercase letter. For example, because the character code of uppercase
letter R is 52H, the character code of lowercase letter r is 52H + 20H = 72H.

• You get the character code of a numerical symbol by adding 30H to the number in
question. For example, the character code of 8 is 30H + 8 = 38H

• The first codes from 0 to 1FH are not printable or visible characters. Instead, they
represent special control characters. Some of the special control characters like
BACKSPACE, TABULATOR, NEWLINE, and ESCAPE can be produced by
computer keyboards. BELL is a special "character" that represent a sound that
computers can produce. A special "character" is also NULL which has code 0. The
NULL character has its own name so that it can be clearly distinguished from the
character code of zero which is 30H.

• You cannot find character codes for non-English letters such as Ä, Ö, Å, Ñ, É, etc.
in the table. The codes of these letters are in the range from 80H to FFH, and there
exist different code tables for this code range.

46 Chapter 3: How information is stored in the memory of a computer

Once you have a character code chart like the table on page 594 available, it is easy
to convert textual information to character codes. For example, the word HELLO is coded
in the following way:

48H 45H 4CH 4CH 4FH (hexadecimal codes)

72 69 76 76 79 (decimal codes)

H E L L O

The sentence "Computing is fun." is coded with the following sequence of numbers:

43H 6FH 6DH 70H 75H 74H 69H 6EH 67H 20H 69H 73H 20H 66H 75H 6EH 2EH

67 111 109 112 117 116 105 110 103 32 105 115 32 102 117 110 46

'C' 'o' 'm' 'p' 'u' 't' 'i' 'n' 'g' ' ' 'i' 's' ' ' 'f' 'u' 'n' '.'

Note that spaces between the words in the sentence above have character codes (20H), and
the full stop ’.’ at the end of the sentence has the code 2EH. Storing the text "Computing is
fun." requires 17 bytes of memory: the letters require 14 bytes altogether, two spaces
require two bytes, and the full stop needs one byte.

It is possible to express numbers with character codes. For example, number 123
could be coded as follows

31H 32H 33H (hexadecimal codes)

49 50 51 (decimal codes)

’1’ ’2’ ’3’

Storing the number 123 coded with character codes would require 3 bytes of memory. If
the number was stored as a binary number, it could be stored in a single byte of memory

ASCII coding is widespread in computing and telecommunications. For example,
when you send an e-mail message on the Internet, the text is converted to character codes
which are sent in electronic form. When you press some key on the keyboard of your com-
puter, the program which is being run by the computer receives the character code of the
key that was pressed. Even source programs are sequences of character codes in a file on a
hard disk of a computer.

One problem with the ASCII coding system is that only the codes from 0 to 7FH (0
to 127) are the same for most computer operating systems. The codes from 80H to FFH
(128 to 255) can have different meanings in different operating systems.

A further limitation of the ASCII coding system is that it defines only 256 different
codes. Those codes represent letters and other symbols used in English and Western-Euro-
pean languages. There are many natural languages which use characters and symbols
which cannot be expressed with the ASCII coding system. Because this kind of limitation
causes problems, a new and more universal coding system for textual information has
been developed. The name of the new system is Unicode, and it uses 16 bits to code each
textual symbol. With 16 bits it is theoretically possible to code 65536 different symbols.

The Unicode system has codes for the characters of many natural languages. Each
character set has been reserved a certain range of character codes. The following are
examples of hexadecimal code ranges

0370 ... 03FF Greek and Coptic characters
0400 ... 04FF Cyrillic characters
0530 ... 058F Armenian characters
0590 ... 05FF Hebrew characters
0600 ... 06FF Arabic characters

3.3 Textual information: character coding systems 47

Because the Unicode system attempts to cover the characters of all natural lan-
guages, it is impossible to show all the character codes and the actual characters here. To
see the character code tables and the actual characters, please visit the Internet address
www.unicode.org.

The first 256 character codes in the Unicode system are the same as the codes of the
standardized ASCII coding system. The following list compares Unicode character codes
to ASCII character codes (Note that all codes are expressed as hexadecimal codes):

CHARACTER Unicode ASCII

 NULL 0000 00
 BACKSPACE 0008 08
 NEWLINE 000A 0A
 ESCAPE 001B 1B

 SPACE 0020 20
 ! 0021 21
 " 0022 22
 # 0023 23
 $ 0024 24
 * 002A 2A
 + 002B 2B

 0 0030 30
 1 0031 31
 2 0032 32
 3 0033 33

 A 0041 41
 B 0042 42
 C 0043 43
 D 0044 44

 a 0061 61
 b 0062 62
 c 0063 63
 d 0064 64

For example, the Unicode character code for the uppercase letter A is

0041H 0000 0000 0100 0001 B

and the corresponding ASCII code is

41H 0100 0001 B

The 8 most significant bits of the Unicode character code of A are zeroes. As leading
zeroes in a number are not mathematically significant, the two codes above can be consid-
ered equal.

We shall see later that the Java programming language encodes textual information
according to the Unicode system. Therefore, when a Java program stores a character, it
reserves 16 bits (2 bytes) of memory to store the code of the character. Of those 16 bits,
however, 8 most significant bits are zeroes when the character is one that belongs to the
English alphabet.

Because the first 256 Unicode character codes are the same as the ASCII codes, you
can use the table on page 594 to find out the Unicodes of characters. For example, when
you want to find out the Unicode character code of the letter R, you can pick up the code
52H from the table, and add two leading zeroes to the hexadecimal code.

The Unicode character coding system is still evolving, and it includes character
codes that need more than 16 bits of storage capacity. In this book, however, we use only
the traditional 16-bit codes.

48 Chapter 3: How information is stored in the memory of a computer

3.4 More information: pictures, sound, and moving pictures

The memory of a computer, whether it is silicon-based main memory, magnetic disk mem-
ory, or optical memory such as CD, contains just bits, zeroes and ones. All these types of
memory store information in digital binary form. Numbers and texts are stored in binary
form, and so it is in the case of such forms of information as pictures, sound, and even
moving pictures.

We learned in the previous section that to store textual information in computer
memory, there has to be a commonly accepted standard. The Unicode system is a standard
according to which textual information can be stored and transferred in digital form. To
store pictures, sound (music), and moving pictures in digital form, there are own special
standards for each type of information. These standards can be called storage formats. One
storage format can be more widely accepted than another storage format.

A picture can be put into digital form so that the picture area is divided into thou-
sands of tiny points, and the color and brightness of each point is then described with a
numerical value which is stored in binary form. The picture area of a digital picture can
be, for example, 2048 points wide and 1536 points high. If the color and brightness of
each point were stored in an 8-bit byte, storing this kind of a digital picture would require
2048 * 1536 = 3145728 bytes of storage capacity. This is the basic idea for how pictures
can be stored in digital form. The existing standard formats for storing picture information
are, however, more complex than the description above. Examples of digital picture for-
mats are:

• GIF, Graphics Interchange Format,

• JPEG, the format of Joint Photographic Experts Group, and

• TIFF, Tagged Image File Format.

Sound can be converted to digital form so that extremely many samples are taken
from the original sound, and each sample is then described with a numerical value which
is stored in binary form. The music on audio CDs, for example, is made by taking every
second thousands of samples from the music. The millions of resulting samples are stored
on a CD in binary form. When the CD is played with a CD player, the player constructs
the original sound from the binary sound samples. The audio CD standard is one way to
store sound in digital form. Another example of a digital sound standard is called MP3.

Moving pictures are in digital form on video DVDs and on the tapes used in digital
video cameras. Storing moving pictures in digital form requires a lot of storage capacity
because moving pictures are made of many still pictures. Standards for storing moving
pictures in digital form are set by Moving Pictures Experts Group (MPEG). The standard
for storing digital video pictures on CD is called MPEG-1. The standard that is used on
DVDs and digital TV is called MPEG-2. It is likely that companies that manufacture digi-
tal video cameras have their own standards for storing moving pictures on tape.

The purpose of this section was to give you an overview of the possibilities which
exist to store digital information in computer memory. Storing and handling of digital
information requires computer programs, and the purpose of this book is to teach you to
write computer programs. While learning computer programming we will concentrate
only on numerical and textual information in this book. The reason for this is that the han-
dling of numerical and textual information is much easier for a beginner than the handling
of pictures, sound, and moving pictures. After you have learned computer programming
sufficiently well, you may one day write programs which do something smart with sound
or moving pictures.

