
CHAPTER 6

DECISIONS AND REPETITIONS: BASIC ACTIVITIES IN PROGRAMS

So far, our programs have been made of statements that declare variables, assignment
statements, input statements, and output statements. Assignment statements, which we
studied in the previous chapter, are fundamentally important action statements in computer
programs. With an assignment statement, we can copy the contents of one variable into
another variable, or we can produce a new value for a variable by inserting an arithmetic
expression to the right side of an assignment operation. Assignment statements always
write to a location in the main memory of a computer.

In this chapter, we will study more fundamental statements used in computer program-
ming. You will learn to write statements that make decisions (selections) and perform rep-
etitions. Decisions made in a program result in some statements being executed and others
not being executed. Performing repetitions means that one or more statements can be exe-
cuted many times. Java provides if and switch statements for making decisions, and
while, for, and do-while statements for performing repetitions. In this book, if state-
ments are usually called if constructs, and while, for, and do-while statements are
called loops.

© Copyright 2006-2013 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
als who want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in
a retrieval system or lend these pages in public or private libraries.
For more information about Kari Laitinen’s books, please visit
http://www.naturalprogramming.com/

134 Chapter 6: Decisions and repetitions: basic activities in programs

6.1 Making decisions with keywords if and else

The word "if" in our natural language expresses a condition. We can say: "If the weather is
warm and sunny tomorrow, let's go to the beach." The word "if" is used in a similar way in
Java. if is a keyword that identifies the basic decision-making mechanism of Java.

if statements, which we often call if constructs, are used to make decisions in Java.
The structure of the simplest if construct is described in Figure 6-1. An if construct
always contains a boolean expression that can be either true or false. Boolean expressions
are named after George Boole (1815 - 1864) whose ideas have deeply influenced comput-
ing and programming.

Boolean expressions define conditions. In if constructs, the boolean expression is
given in parentheses () after the keyword if. Every boolean expression has a truth value
which is always either true or false, but not both. Provided that the boolean expression is
true, the statements inside the braces { } after the boolean expression will be executed. If
the boolean expression is false (i.e. not true), the statements inside the braces will not be
executed, and the execution of the program continues from the statement that follows the
closing brace of the if construct.

 Figure 6-1. The structure of a simple if construct

if (boolean expression)
{

One or more statements that will be executed if the boolean
expression, given in parentheses above, is true. These statements
will not be executed at all if the boolean expression is false (i.e.
not true).

}

Figure 6-2. The structure of an if-else construct

if (boolean expression)
{

One or more statements that will be executed if the boolean
expression, given in parentheses above, is true.

}
else
{

One or more statements that will be executed if the boolean
expression, given in parentheses above, is false (i.e. not true).

}

6.1 Making decisions with keywords if and else 135

A more advanced form of if statement is an if-else construct which contains two
Java keywords, if and else. The structure of if-else construct is explained in Figure
6-2. The if-else construct has two blocks of statements, and only one block of state-
ments will be executed. When one or more statements are inside braces { }, we can call
the group of statements an embraced block of statements, or simply a block. In if-else
constructs, depending on the truth value of the boolean expression, either the first block of
statements or the second block, but never both, will be executed. The if-else construct
thus makes a decision as to which program block will be executed.

Program Largeint.java is an example where two decisions are made with keywords
if and else. The first decision is made with an if-else construct. The second decision
is made with a simple if construct. The program is able to find the largest of three integers
that the user types in from the keyboard. First the program decides which is larger of the
first two integers. Then it decides whether the third integer is larger than the largest of the
first two integers.

Boolean expressions have a truth value, either true or false. To write a boolean
expression we need operators that can describe situations that are either true or false. Rela-
tional operators, which are listed in Table 6-1, are common in boolean expressions. In pro-
gram Largeint.java, the relational operator < is used in the boolean expression

(first_integer < second_integer)

to test whether it is true that the value of the variable first_integer is less than the
value of the variable second_integer. A common use for relational operators is to com-
pare values of variables, but relational operators can also take numerical values as oper-
ands. For example, the boolean expression

(some_variable == 0)

tests whether the contents of some_variable is zero. If the contents of some_variable
is zero, then the expression above is true, otherwise it is false. Because relational operators
compare variables and other values, they are also called comparison operators.

Operator ==, like most of the relational operator symbols, consists of two characters.
There should be no spaces between the two characters. Writing, for example, = = will
result in a compilation error. The compiler would interpret the two equal signs separated
with a space as two adjacent assignment operators.

Table 6-1: The relational operators of Java

Operator symbol Operator name

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 == equal

 != not equal

136 Chapter 6: Decisions and repetitions: basic activities in programs

// Largeint.java

import java.util.* ;

class Largeint
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 System.out.print("\n This program can find the largest of three"
 + "\n integers you enter from the keyboard. "
 + "\n Please, enter three integers separated "
 + "\n with spaces : ") ;

 int first_integer = keyboard.nextInt() ;
 int second_integer = keyboard.nextInt() ;
 int third_integer = keyboard.nextInt() ;

 int found_largest_integer ;

 if (first_integer > second_integer)
 {
 found_largest_integer = first_integer ;
 }
 else
 {
 found_largest_integer = second_integer ;
 }

 if (third_integer > found_largest_integer)
 {
 found_largest_integer = third_integer ;
 }

 System.out.print("\n The largest integer is "
 + found_largest_integer + ".\n") ;
 }
}

This program shows that variable declarations do not need to be
the first statements of a program. This statement, which is written
after a couple of action statements, both declares a variable of type
int and assigns a value to the declared variable by reading a value
from the keyboard. By using these kinds of statements it is possible to
make programs somewhat shorter. This single statement means the
same as the two statements

 int first_integer ;
 first_integer = keyboard.nextInt();

This is the simplest form of an if construct,
containing only the keyword if. If the contents of
third_integer is greater than the contents of
found_largest_integer, the contents of vari-
able third_integer will be copied to variable
found_largest_integer.

This is an if-else construct. If the
contents of first_integer is greater than
the contents of second_integer, the con-
tents of first_integer will be copied to
found_largest_integer. Otherwise, the
contents of second_integer will be cop-
ied to found_largest_integer.

Largeint.java - 1.+ A program to find the largest of three integers.

6.1 Making decisions with keywords if and else 137

The relational operator >, greater than, is used to define a
boolean expression which determines which variable shall be
copied to found_largest_integer.

Note that there are no
semicolons (;) following
the boolean expressions of
if constructs.

Largeint.java - 1-1. The if constructs that find the largest integer.

 if (first_integer > second_integer)
 {
 found_largest_integer = first_integer ;
 }
 else
 {
 found_largest_integer = second_integer ;
 }

 if (third_integer > found_largest_integer)
 {
 found_largest_integer = third_integer ;
 }

Largeint.java - X. The program finds 222 to be the largest of 111, 222, and 211.

D:\javafiles2>java Largeint

 This program can find the largest of three
 integers you enter from the keyboard.
 Please, enter three integers separated
 with spaces : 111 222 211

 The largest integer is 222.

138 Chapter 6: Decisions and repetitions: basic activities in programs

Program Evenodd.java is another example of the use of an if-else construct. This
program asks the user to type in an integer, and it decides whether the given integer is an
even or odd number. Because even numbers are equally divisible by two, the if-else
construct in the program Evenodd.java simply tests whether it is true that if the given
number divided by two would result in a zero remainder. The boolean expression in Even-
odd.java is

((integer_from_keyboard % 2) == 0)

and it contains the arithmetic expression (integer_from_keyboard % 2). The % oper-
ator is an arithmetic operator belonging to the same category as +, -, *, and /. Operator %
returns the remainder that would result if its left operand were divided by its right operand.
In the expression above, % returns the remainder that would result if the value of variable
integer_from_keyboard were divided by two. The value of the variable is not modi-
fied. In the above expression the remainder is calculated first and then the remainder is
compared to zero. The relational comparison operator returns true when the remainder is
zero. Otherwise it returns false.

When integers are divided by two, the remainder is always zero or one, depending on
whether the integer is even or odd. As there are only two possible values for the remainder
in divisions by two, the boolean expression

((integer_from_keyboard % 2) != 1)

could replace the boolean expression used in the program Evenodd.java and the program
would work equally well. Operator != returns true when its operands are not equal. Bool-
ean expressions can often be written either with operator == (equal) or with operator !=
(not equal). When possible, it is better to use operator ==, because it is usually easier to
understand.

The remainder operator %

The remainder operator %, which is sometimes called the modulus operator, is used with integers only. Division
operations with integers are sometimes inaccurate because computers do not round numbers upwards. For example,
the division operation 11/4, eleven divided by four, would be evaluated to 2 although 3 would be closer to the cor-
rect value. Computers do not obey human division rules. In division operations involving integers, computers
always round downwards. For this reason, the remainder operator % is sometimes useful. To understand operators /
and % properly, below are some correct calculations for you to study.

1 / 2 is 0 1 % 2 is 1
2 / 2 is 1 2 % 2 is 0
7 / 4 is 1 7 % 4 is 3
9 / 4 is 2 9 % 4 is 1
14 / 5 is 2 14 % 5 is 4
101 / 10 is 10 101 % 10 is 1

6.1 Making decisions with keywords if and else 139

This program is based on the fact that even numbers are
equally divisible by two. (integer_from_keyboard % 2)
is an arithmetic expression that is part of the boolean expres-
sion of this if construct. % is the remainder operator of Java.
In this case, % returns the remainder that would result if
integer_from_keyboard were divided by two. With even
numbers the remainder is zero, making the boolean expres-
sion true.

This statement will be executed when the boolean expres-
sion, given in parentheses after the keyword if, is false.

Evenodd.java - 1. A program to find out whether a given integer is even or odd.

// Evenodd.java (c) Kari Laitinen

import java.util.* ;

class Evenodd
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 int integer_from_keyboard ;

 System.out.print("\n This program can find out whether an integer"
 + "\n is even or odd. Please, enter an integer: ") ;

 integer_from_keyboard = keyboard.nextInt() ;

 if ((integer_from_keyboard % 2) == 0)
 {
 System.out.print("\n " + integer_from_keyboard + " is even.\n") ;
 }
 else
 {
 System.out.print("\n " + integer_from_keyboard + " is odd. \n") ;
 }
 }
}

Evenodd.java - X. The program executed with input value 12345.

D:\javafiles2>java Evenodd

 This program can find out whether an integer
 is even or odd. Please, enter an integer: 12345

 12345 is odd.

140 Chapter 6: Decisions and repetitions: basic activities in programs

In most cases, there is no single way to write a computer program to accomplish the
desired program behavior and functionality. This is generally true also for boolean expres-
sions. For example, all the following boolean expressions mean the same

(first_integer < second_integer)
(second_integer > first_integer)
((second_integer - first_integer) > 0)
((first_integer - second_integer) < 0)
((first_integer + 1) <= second_integer)

It is, however, good programming practice to try to write simple, non-complex, and ele-
gant programs. For this reason, the last three boolean expressions would not be appropri-
ate choices because they are made unnecessarily complex by using arithmetic operators.

Figure 6-3 shows the structure of a large if construct, the if-else if-else con-
struct. Such a construct consists of three parts: an if part, an else if part, and an else
part. Each part contains an embraced program block. The execution of the program blocks
is controlled by two boolean expressions. To be accurate, the program construct described
in Figure 6-3 actually consists of two if-else constructs. The else-if part starts the
second if-else construct. The second else-if construct does not have any braces
around itself. You will understand this more clearly when the use of braces in Java pro-
gram constructs is discussed in more detail in Section 6.6.

The if structure explained in Figure 6-3 is used in program Likejava.java. The if-
else if-else construct selects one of three program blocks to be executed. It is possible
to write even more complex if constructs by adding more else if parts between the if
part and else part. Program Iffing.java is an example where three else if parts are used
in a single if construct. In summary, we can state the following facts about if constructs:

• Every if construct contains an if part.

• if constructs can contain zero, one, or more else if parts.

• if constructs contain zero or one else parts.

Figure 6-3. The structure of an if-else if-else construct.

if (boolean expression 1)
{

One or more statements that will be executed if and only if
boolean expression 1 is true.

}
else if (boolean expression 2)
{

One or more statements that will be executed if and only if
boolean expression 2 is true and boolean expression 1 is false.

}
else
{

One or more statements that will be executed if and only if
neither boolean expression 1 nor boolean expression 2 is true.

}

6.1 Making decisions with keywords if and else 141

Both programs Likejava.java and Iffing.java investigate what is the character code
of the character that the user typed in from the keyboard. Character coding systems were
discussed in Chapter 3. Java uses a character coding system called Unicode in which each
character is coded with a 16-bit value. In practice, however, the character codes of the
English characters as well as many other European characters can be expressed with 8 bits,
and the 8 most significant bits of these character codes are zeroes. In Java, single quotes
are used to refer to the character codes of characters. For example,

'Y' means the character code of Y (89, 59H)

'n' means the character code of n (110, 6EH)

'9' means the character code of 9 (57, 39H)

' ' means the character code of space (32, 20H)

By using single quotes it is possible to refer to a character code without remembering
the numerical value of the character code. When 'Y' appears in a program, it means the
same as the numerical literal constant 89, the character code of uppercase letter Y. For a
Java compiler, the relational expression

(character_from_keyboard == 'Y')

and the relational expression

(character_from_keyboard == 89)

are technically the same, but for a human reader they are different and the first form is eas-
ier to understand. It is difficult to remember the character codes of all characters. There-
fore, the meaning of 'Y' is easier to grasp than the meaning of 89. In the terminology of
programming languages, characters inside single quotes, such as 'Y', 'n', '9', and ' ', are
called character literals. In addition to character literals, we also need string literals like
"Hello!" in our programs. In Java, character literals are written with single quotes and
string literals are written with double quotes.

Programs Likejava.java and Iffing.java introduce new operators called logical
operators. These operators can combine several relational expressions into a single bool-
ean expression. For example, in the boolean expression

((character_from_keyboard == 'Y') ||
 (character_from_keyboard == 'y'))

the logical-OR operator || combines two relational expressions. The logical-OR operator ||
returns true if either or both of its operands, the relational expressions, are true. The logi-
cal-OR returns false only when both of its operands are false. The truth value of the bool-
ean expression above is evaluated so that the truth values of the relational expressions are
evaluated first, and these truth values are then joined with the logical-OR operator ||. If the
contents of variable character_from_keyboard were 121, which is 'y', the relational
expressions would have the following truth values

(character_from_keyboard == 'Y') would be false
(character_from_keyboard == 'y') would be true

The truth value of the entire boolean expression would be true because the logical-OR
operation result for false and true is true. (To be accurate, the logical-OR operator || works
so that it does not check the truth value of its second operand if its first operand makes the
entire boolean expression true.)

142 Chapter 6: Decisions and repetitions: basic activities in programs

// Likejava.java (c) Kari Laitinen

import java.util.* ;

class Likejava
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 char character_from_keyboard ;

 System.out.print("\n Do you like the Java programming language?"
 + "\n Please, answer Y or N : ") ;

 character_from_keyboard = keyboard.nextLine().charAt(0) ;

 if ((character_from_keyboard == 'Y') ||
 (character_from_keyboard == 'y'))
 {
 System.out.print("\n That's nice to hear. \n") ;
 }
 else if ((character_from_keyboard == 'N') ||
 (character_from_keyboard == 'n'))
 {
 System.out.print("\n That is not so nice to hear. "
 + "\n I hope you change your mind soon.\n") ;
 }
 else
 {
 System.out.print("\n I do not understand \""
 + character_from_keyboard + "\".\n") ;
 }
 }
}

’Y’ is a character literal which
means 59H, the character code of
uppercase letter Y. Single quotes
are used to write character literals
in Java. Character literals are
sometimes called character con-
stants or literal character con-
stants.

This statement will be executed if
character_from_keyboard contains
something other than ’Y’, ’y’, ’N’, or ’n’.
Note that if you want to include a double
quote character (") among the text to be
printed, you must write a backslash \
before it.

This boolean expression is true
if character_from_keyboard
contains either the character code
for uppercase N or lowercase n. || is
the logical-OR operator which can
combine relational expressions.

Likejava.java - 1.+ A program containing an if-else if-else construct.

This statement reads a value for the char variable
character_from_keyboard. This is achieved by
first reading a line of text from the keyboard, and then
using the charAt() method to take the first character
of the text line.

6.1 Making decisions with keywords if and else 143

This is a relational expression which is true when variable
character_from_keyboard contains the character code of
uppercase Y (59H). The relational expression is inside paren-
theses and it is made with relational operator ==.

This logical-OR opera-
tor || combines the two
relational expressions into
one boolean expression,
which is true when at least
one of the relational
expressions is true. The
entire boolean expression
is false only when both
relational expressions are
false.

Likejava.java - 1-1. The first boolean expression in the program.

 if ((character_from_keyboard == 'Y') ||
 (character_from_keyboard == 'y'))

This is another relational expression, and it is true when
character_from_keyboard contains 79H, the character
code of lowercase y.

Likejava.java - X. The program is executed here twice, with inputs y and z.

D:\javafiles2>java Likejava

 Do you like the Java programming language?
 Please, answer Y or N : y

 That's nice to hear.

D:\javafiles2>java Likejava

 Do you like the Java programming language?
 Please, answer Y or N : z

 I do not understand "z".

144 Chapter 6: Decisions and repetitions: basic activities in programs

// Iffing.java

import java.util.* ;

class Iffing
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 char given_character ;

 System.out.print("\n Please, type in a character: ") ;

 given_character = keyboard.nextLine().charAt(0) ;

 if (given_character < ' ')
 {
 System.out.print("\n That is an unprintable character \n") ;
 }
 else if (given_character >= '0' && given_character <= '9')
 {
 System.out.print("\n You hit the number key "
 + given_character + ". \n ") ;
 }
 else if (given_character >= 'A' && given_character <= 'Z')
 {
 System.out.print("\n " + given_character
 + " is an uppercase letter. \n") ;
 }
 else if (given_character >= 'a' && given_character <= 'z')
 {
 System.out.print("\n " + given_character
 + " is a lowercase letter. \n") ;
 }
 else
 {
 System.out.print("\n " + given_character
 + " is a special character. \n") ;
 }
 }
}

Character codes are tested in these boolean expressions. Codes
that are less than 20H are non-printable characters. Numbers are in
the range from 30H to 39H, uppercase letters in the range from 41H
to 5AH, and lowercase letters in the range from 61H to 7AH. ’ ’
means the character code of space (20H), ’9’ means the character
code of digit 9 (39H). && is the logical-AND operator which returns
true only if the relational expressions on both sides of && are true.

Iffing.java - 1. A program that contains a complex if construct.

Iffing.java - X. The program executed with input z.

D:\javafiles2>java Iffing

 Please, type in a character: z

 z is a lowercase letter.

6.1 Making decisions with keywords if and else 145

Program Iffing.java examines the character code of the character that it receives
from the keyboard. It can find out whether the character is an unprintable character, a
number, an uppercase letter, or a lowercase letter. If the character is none of these, the pro-
gram assumes that the character is a punctuation character or some other special character.
Iffing.java has the boolean expression

(given_character >= '0' && given_character <= '9')

to check whether variable given_character contains the character code of a number. In
this boolean expression the logical-AND operator (&&) is used to combine the two rela-
tional expressions. The logical-AND operator returns true only when both of its operands
are true. In the above boolean expression, the relational expressions are the operands of the
logical-AND operator. If either or both of the relational expressions is false, the entire
boolean expression is false. When variable given_character contains a value that is
greater or equal to the character code of zero (30H) and less than or equal to the character
code of nine (39H), the boolean expression above is true.

The boolean expression above could be written, without changing its meaning, with
extra parentheses, in the following way

((given_character >= '0') && (given_character <= '9'))

but the extra parentheses are not necessary because the operator && has a lower prece-
dence than the relational operators >= and <=. Precedence of operators means the order in
which the operators take effect. Operators with higher precedence are applied before oper-
ators with lower precedence. In the boolean expression above, operators >= and <= take
precedence over operator &&. You can think that the program first evaluates the truth val-
ues of the relational expressions

given_character >= '0'
given_character <= '9'

and then the calculated truth values are used in a logical-AND operation. In reality, how-
ever, the truth value of the second operand is not checked in a logical-AND operation if
the first operand of && is false.

Java operators are listed in the order of their precedence in Appendix A. The official
precedence of operators can always be overridden with parentheses. For example, the mul-
tiplication operator * has a higher precedence than the addition operator +, but with paren-
theses this precedence can be changed. The following example shows the effect of the use
of parentheses:

2 * 5 + 4 would be evaluated to 14, but
2 * (5 + 4) would be evaluated to 18.

The logical operators are listed in Table 6-2 and their behavior is summarized in
Table 6-3. The NOT operator ! is said to be an unary operator because it takes only one
operand. The NOT operator complements the truth value of its operand expression. Com-
plementing is sometimes called inverting or reversing. Complementing means that either
true becomes false or false becomes true. The NOT operator can be used to write complex
expressions. For example, the expressions

(given_character <= '9')
(! (given_character > '9'))

mean the same but the latter expression is more difficult to read and understand. It is better
to favor simple expressions. The NOT operator (!) is often useful, but it should not be used
unnecessarily.

146 Chapter 6: Decisions and repetitions: basic activities in programs

Table 6-2: The logical operators of Java.a

a. Java has operators & and | which work in many cases like operators && and ||, respec-
tively. It is, however, better to use operators && and || when you write boolean ex-
pressions for if constructs and loops. Operators & and | will be discussed in Chapter
16.

Operator
symbol

Operator name Explanation

 || Logical OR Logical OR returns true if either or both of its
operand expressions is true.

 && Logical AND Logical AND returns true only if both of its
operand expressions are true.

 ! NOT NOT operator complements the truth value of
the expression to the right of the operator sym-
bol !.

Table 6-3: The truth values of logical operations. (a and b can be
variables or expressions.)

 a b a || b a && b ! a ! b

false false false false true true

false true true false true false

true false true false false true

true true true true false false

Exercises related to if constructs
Exercise 6-1. Make a copy of program Largeint.java. You might name the new file Largest4.java. Modify

the new file so that it asks for four integers from the keyboard and finds the largest of the four
integers. Having done that, make the program find both the smallest and the largest of the four
integers.

Exercise 6-2. Write a program that can convert amounts of currency given in U.S. dollars to Japanese yen and
vice versa. Check out the latest currency exchange rates in a newspaper. Your program must
first ask whether the user wants to change dollars to yen or yen to dollars. The program must
have an if construct which selects the right conversion statements. Naturally, if you prefer, you
can also use other currency units in your program.

Remember that Appendix C contains advice for programming exercises.

6.2 Making decisions with switch-case constructs 147

6.2 Making decisions with switch-case constructs

Various kinds of if constructs are the principal means for making decisions in Java pro-
grams. In addition to if constructs, Java provides switch-case constructs to make deci-
sions. switch and case are keywords in Java. You can make all decisions with if
constructs, but with switch-case constructs you can sometimes make the decisions with
less writing.

In this section we shall study programs that contain switch-case constructs. You
need to learn these constructs in order to master Java, and to understand programs you find
in the literature. However, because switch-case constructs are not used much in this
book, you can temporarily skip this section if you are eager to learn more interesting
things about Java. You can come back to this section when you see the keywords switch
and case somewhere.

A switch-case construct is sometimes convenient when you need to test the value
of some variable many times. For example, in program Likejava.java the value of vari-
able character_from_keyboard is tested altogether four times in two boolean expres-
sions. To demonstrate the use of a switch-case construct, the if-else if-else
construct of Likejava.java is replaced with a switch-case construct in Likejavas.java.
Program Likejavas.java is thus a rewritten version of Likejava.java. This again proves
that there can be two programs that behave precisely in the same way although they are
written in different ways.

Figure 6-4 shows how switch-case constructs usually look like. The structure of a
switch-case construct is often such that you test the value of an arithmetic expression,
and jump to different cases in the construct depending on the value of the tested arithmetic
expression. When the program execution goes to some case inside the braces of the con-
struct, the execution continues from that point until a break statement is encountered.
break, which is a reserved word and a statement of its own, has the effect that the execu-
tion of the program breaks out from the area surrounded by braces. Program Sen-
tence.java is an example which further clarifies the role of break statements in switch-
case constructs.

Figure 6-4. The structure of a typical switch-case construct.

switch (arithmetic expression)
{
case v1:

Statements which will be executed if the arithmetic expression
has value v1

 break ;
case v2:

Statements which will be executed if the arithmetic expression
has value v2

 break ;
case vn:

Statements to be executed when the arithmetic expression has
value vn

 break ;
default:

Statements which will be executed if none of the cases matched
the value of the arithmetic expression

 break ;
}

148 Chapter 6: Decisions and repetitions: basic activities in programs

// Likejavas.java

import java.util.* ;

class Likejavas
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 char character_from_keyboard ;

 System.out.print("\n Do you like the Java programming language?"
 + "\n Please, answer Y or N : ") ;

 character_from_keyboard = keyboard.nextLine().charAt(0) ;

 switch (character_from_keyboard)
 {
 case 'Y':
 case 'y':
 System.out.print("\n That's nice to hear. \n") ;
 break ;
 case 'N':
 case 'n':
 System.out.print("\n That is not so nice to hear. "
 + "\n I hope you change your mind soon.\n") ;
 break ;
 default:
 System.out.print("\n I do not understand \""
 + character_from_keyboard + "\".\n") ;
 break ;
 }
 }
}

A switch-case construct is indeed like a
switch that you can turn to many positions. The
cases inside braces are the possible positions
where the program execution can go in the
switching operation. The execution of the pro-
gram jumps from the keyword switch into this
position when character_from_keyboard
contains either ’N’ or ’n’. The break statements
cause the program execution to jump outside the
switch-case construct.

The case marked with keyword
default is the place where the pro-
gram execution jumps to if none of the
other cases match the contents of
character_from_keyboard.

Likejavas.java - 1. Program Likejava.java rewritten using a switch-case construct.

Often, switch-case constructs test the value of a
single variable of type char or int. The variable that is
tested is written in parentheses after the keyword
switch. A single variable is, in fact, a simple arithmetic
expression. It is also possible to write a more complex
arithmetic expression inside the parentheses. In that
case, switching is carried out according to the evaluated
value of the arithmetic expression.

6.2 Making decisions with switch-case constructs 149

Likejavas.java - X. The program is executed here with input 5.

D:\javafiles2>java Likejavas

 Do you like the Java programming language?
 Please, answer Y or N : 5

 I do not understand "5".

Exercises related to boolean expressions
Exercise 6-3. Let’s suppose that first_variable has value 5, second_variable has value 8, and

third_variable contains value 14. Write T or F after the following boolean expressions
depending on whether they are true or false!

(first_variable < second_variable)
(third_variable < first_variable)
(! (first_variable < second_variable))
(third_variable > first_variable)
((first_variable + second_variable) < third_variable)
((first_variable + second_variable) <= third_variable)
((third_variable - second_variable) > first_variable)
(first_variable == 0)
(! (first_variable == 0))
(first_variable > 0 || second_variable < 0)
(first_variable == 8 || second_variable == 5)
(first_variable < second_variable && third_variable >= 14)
(first_variable == 5 && second_variable > 8)

Exercise 6-4. Write the following complex boolean expressions in a simpler form

(! (some_variable == 8))
((some_variable - 10) > 0)
(some_variable < 88 || some_variable == 88)
((some_variable - other_variable) < 0)
(! (! (some_variable < 99)))

150 Chapter 6: Decisions and repetitions: basic activities in programs

// Sentence.java

import java.util.* ;

class Sentence
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 char character_from_keyboard ;

 System.out.print(
 "\n Type in L, M, or S, depending on whether you want"
 + "\n a long, medium, or short sentence displayed: ") ;

 character_from_keyboard =
 keyboard.nextLine().toUpperCase().charAt(0) ;

 System.out.print("\n This is a") ;

 switch (character_from_keyboard)
 {
 case 'L':
 System.out.print(" switch statement in a \n") ;
 case 'M':
 System.out.print(" program in a") ;
 case 'S':
 System.out.print(" book that teaches Java programming.") ;
 default:
 System.out.print("\n I hope that this is an interesting book.\n");
 }
 }
}

Because there are no break statements in this switch-
case construct, all statements following a certain case will
be executed. For example, when the user of the program types
in the letter L, all statements inside the switch-case con-
struct will be executed because case ’L’: happens to be the
first case.

Sentence.java - 1. Using a switch-case construct with no break statements.

This statement reads a value for the char
variable character_from_keyboard. The
input from the keyboard is processed so that
first the method nextLine() reads a line of
text, then the method toUpperCase() con-
verts all characters of the given text line to
uppercase letters, and finally method
charAt() takes the first character of the text
line. As the text characters are converted to
uppercase letters, the user of the program
does not need to worry about the case of the
letters.

This program, which is a somewhat illogi-
cal program, clarifies the role of the break
statements in switch-case constructs. As a
general rule, programs should not be written
like this. There should always be a break
statement after the statements of each case in
a switch-case construct.

6.2 Making decisions with switch-case constructs 151

Sentence.java - X. The program is executed here twice, with inputs s and L.

D:\javafiles2>java Sentence

 Type in L, M, or S, depending on whether you want
 a long, medium, or short sentence displayed: s

 This is a book that teaches Java programming.

 I hope that this is an interesting book.

D:\javafiles2>java Sentence

 Type in L, M, or S, depending on whether you want
 a long, medium, or short sentence displayed: L

 This is a switch statement in a
 program in a book that teaches Java programming.

 I hope that this is an interesting book.

152 Chapter 6: Decisions and repetitions: basic activities in programs

6.3 while loops enable repetition

At this point you should have realized that computers are actually quite stupid machines.
To make them do something, you have to very carefully and precisely describe that thing
in a source program. But what computers lack in intelligence they gain in speed. Once you
have written a program that works correctly, computers can execute the program
extremely fast–that is, millions of machine instructions per second. And you can run the
same program equally fast, as many times as you like, in many different computers if you
choose. Since computers can do things so fast, they can be made to be very effective by
making them repeat things.

Loops are program constructs with which we can make computers repeat things over
and over. As computers are so fast, we can accomplish many things simply by making a
computer repeat a few simple statements. There are several different loop structures in
Java, but the while loop can be considered the basic loop. The structure of while loops is
described in Figure 6-5.

Programs that we have studied so far have been such that they are executed from the
beginning to end, statement by statement. When there are if constructs in a program, they
have the effect that some statements may be left unexecuted, but programs with if con-
structs are also executed from the beginning to end. When there are loops in a program,
the execution of statements is not always from the beginning to end. With a while loop,
for example, there is a possibility to jump backwards in a program, and execute the inter-
nal statements of the loop over and over. The statements of a program are always executed
in the order they are written in the source program, but a loop allows the program execu-
tion to go through the same statements many times. When a while loop is encountered in
a program during its execution, we can imagine that the computer follows these three
steps:

Step 1. Check the truth value of the boolean expression given in parentheses.

Step 2. If the boolean expression is true, execute the internal statements once and go
back to Step 1.

Step 3. If the boolean expression is false (not true), continue by executing the state-
ments that follow the while loop in the program.

Figure 6-5. The structure of while loops.

Statements preceding the while loop.

while (boolean expression)
{

One or more internal statements that will be repeatedly
executed as long as the boolean expression, given in
parentheses above, is true.

}

Statements following the while loop.

6.3 while loops enable repetition 153

Describing while loops with flowcharts

A flowchart is a traditional way to describe the operation of a program. A flowchart shows graphically how the pro-
gram control flows within a program. Flowcharts are particularly useful to explain how loops operate. Below on the
left you find a flowchart that describes the general operation principle of a while loop. The flowchart on the right
shows how the while loop in program While20.java operates. The arrows in the flowcharts represent movements
from one activity to another in the program. The rectangles describe activities, and the diamond shapes describe
conditions.

Is the boolean expres-
sion in parentheses
true?

Execute the statements that pre-
cede the while loop in the pro-
gram.

Execute once the internal
statements of the loop.

NO

YES

Continue by executing the state-
ments that follow the loop. When a
while loop is the last statement in a
program, there are no statement fol-
lowing the loop, and hence the pro-
gram terminates.

Is the value of variable
number_to_print less
than or equal to 20 ?

NO

YES

Set the value of variable
number_to_print to zero.

Print a space and the value of
variable number_to_print to the
screen, and after that increment
the value of number_to_print by
one.

Stop executing the program
because there are no statements
following the while loop.

154 Chapter 6: Decisions and repetitions: basic activities in programs

Program While20.java is an example where a while loop is used to print the num-
bers from zero to 20 to the screen. The two statements inside the while loop will be
repeated 21 times when the program is run. The essential idea in the while loop is that the
internal statements of the loop modify a variable that affects the truth value of the boolean
expression. In While20.java, the value of variable number_to_print grows inside the
loop. The same variable is tested in the boolean expression, and ultimately the value of
number_to_print is so big that the boolean expression becomes false, and the loop ter-
minates. When the boolean expression of a while loop is not true any more, the program
execution continues from the statement that follows the while loop in the program. In
While20.java, the whole program terminates when the while loop terminates because
there are no statements following the while loop.

Program Whilesum.java is another example of the use of a while loop. The pro-
gram reads integers from the keyboard and maintains the sum of the integers read. The
sum is displayed each time the internal statements of the loop are executed. The loop is
repeated as many times as the user types in an integer. The execution of the loop, and the
entire program, is terminated when the user enters a zero from the keyboard.

The internal statements of a while loop are executed zero times if the boolean
expression is false at the beginning. Rarely executing while loops are sometimes needed
in computer programs, but while loops that are never entered are programming mistakes.
It is often too easy to make a mistake such that the boolean expression of a while loop is
never true. For example, in Whilesum.java, if we initialized variable integer_from_-
keyboard to zero, the internal statements of the while loop would be never entered.

Another common programming mistake is to write a while loop that never termi-
nates. If the execution of the internal statements does not affect the truth value of the bool-
ean expression, the loop is most likely a never-ending, infinite (endless) loop. In older
personal computers the only possibility to terminate an endless loop was to switch off
electricity from the computer. This ultimate loop-termination act may still be sometimes
needed, but it is better first to try to close the window where the program is executing, or
press Control-C (Ctrl and C keys simultaneously on the keyboard). We get an example of
an endless loop by writing the while loop of program While20.java in the following
way:

while (number_to_print <= 20)
{
 System.out.print(" " + number_to_print) ;
}

The loop above is an endless loop, because variable number_to_print is not incre-
mented inside the loop, and the boolean expression stays true forever. If the loop above is
inserted in program While20.java into the place of the existing while loop, the program
would keep printing the number zero forever.

6.3 while loops enable repetition 155

// While20.java

class While20
{
 public static void main(String[] not_in_use)
 {
 int number_to_print = 0 ;

 System.out.print("\n Numbers from 0 to 20 are the following:\n\n ") ;

 while (number_to_print <= 20)
 {
 System.out.print(" " + number_to_print) ;
 number_to_print ++ ;
 }
 }
}

It is possible to declare a variable and assign a value
to it in a single statement. This line means the same as
 int number_to_print ;
 number_to_print = 0 ;

When a variable is assigned a value at the same time
when it is declared, we say that the variable is an initial-
ized variable.

++ is called the increment operator. In this case the
operator increments the value of number_to_print by
one. This line means the same as

 number_to_print = number_to_print + 1 ;

The two statements inside
braces after the boolean expres-
sion will be repeatedly executed
as long as the boolean expres-
sion is true. As the value of
number_to_print is initially
zero, and it is incremented by
one every time the loop is exe-
cuted, the loop will terminate
after 21 repetitions.

While20.java - 1. A program containing a simple while loop.

The above program could be constructed without a loop
by writing the two statements 21 times in the program:
 System.out.print(" " + number_to_print) ;
 number_to_print ++ ;
 System.out.print(" " + number_to_print) ;
 number_to_print ++ ;
 System.out.print(" " + number_to_print) ;
 number_to_print ++ ;
 ... etc. etc.
It is easier, though, to write the program by using a loop.

While20.java - X. The output from the program is always the same.

D:\javafiles2>java While20

 Numbers from 0 to 20 are the following:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

156 Chapter 6: Decisions and repetitions: basic activities in programs

// Whilesum.java (c) Kari Laitinen

import java.util.* ;

class Whilesum
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 int integer_from_keyboard = -1 ;
 int sum_of_integers = 0 ;

 System.out.print("\n This program calculates the sum of the integers"
 + "\n you type in from the keyboard. By entering a"
 + "\n zero you can terminate the program. \n\n") ;

 while (integer_from_keyboard != 0)
 {
 System.out.printf(" Current sum: %8d Enter an integer: ",
 + sum_of_integers) ;

 integer_from_keyboard = keyboard.nextInt() ;

 sum_of_integers = sum_of_integers + integer_from_keyboard ;
 }
 }
}

These variables are assigned initial values at the same time
they are declared. integer_from_keyboard must be initial-
ized with a non-zero value because otherwise the boolean expres-
sion of the while loop would not be true at the beginning.
sum_of_integers must be zero at the beginning because no
integers have been read from the keyboard so far.

Variable integer_from_key-
board gets a new value each time the
internal statements of the loop are exe-
cuted. Immediately after the integer is
read from the keyboard, it is added to the
sum of the integers.

Whilesum.java - 1. A program to calculate the sum of integers in a while loop.

This boolean expression is
true as long as integer_-
from_keyboard contains some-
thing other than a zero. != is the
"not equal" operator of Java

The value of variable sum_of_integers
is printed right-justified into a printing field
that is 8 character positions wide. This is
achieved by using the format specifier %8d
with the printf() method. When the internal
statements of the loop are executed for the first
time, sum_of_integers is zero.

6.3 while loops enable repetition 157

while loops, and also other loops, are such that we often use a particular integer
variable to control the correct termination of the loop. The technique works by having a
variable as part of the boolean expression of the loop, and this same variable is incre-
mented or decremented inside the loop. To increment and decrement the values of vari-
ables, Java provides two operators ++ and --. Operator ++ is the increment operator which
increments the value of a variable by one. Operator -- is the decrement operator which
subtracts one from the value of the variable. Incrementing the value of a variable by one is
the same as assigning the variable a value which is one larger than its current value. Thus
the meaning of the following two statements is the same:

some_variable ++ ;
some_variable = some_variable + 1 ;

Also the meaning of the following two statements is the same:

some_variable -- ;
some_variable = some_variable - 1 ;

Increment and decrement operators are useful because incrementing and decrement-
ing operations are so common inside loops, and these operators allow us to write things
down in a concise way. When you use an increment or decrement operator in a program,
you may not write any spaces between the two plus or minus signs. If you write, for exam-
ple, + +, the compiler interprets these separate plus signs as two adjacent addition opera-
tors, and most likely displays an error message.

Assignment statements and increment/decrement statements, such as the ones above,
are usually short, occupying only one line in a program. They look very different from
loops or if constructs. However, it is important to realize also that while loops, and the
other loops that will be introduced in the following sections, are statements. Various kinds
of if constructs are also statements. Because loops and if constructs are usually long and
consist of many lines of source program, they do not look very similar to the shorter state-
ments. For this reason, they are just called loops and constructs in this book, but you must
remember that loops and if constructs are statements. A loop can have another loop or an
if construct as an internal statement.

Whilesum.java - X. The program calculates the sum of six integers here.

D:\javafiles2>java Whilesum

 This program calculates the sum of the integers
 you type in from the keyboard. By entering a
 zero you can terminate the program.

 Current sum: 0 Enter an integer: 5
 Current sum: 5 Enter an integer: 16
 Current sum: 21 Enter an integer: 107
 Current sum: 128 Enter an integer: 1008
 Current sum: 1136 Enter an integer: 9999
 Current sum: 11135 Enter an integer: 0

158 Chapter 6: Decisions and repetitions: basic activities in programs

6.4 for loops repeat a known number of times

Program While20.java uses a while loop to print numbers from 0 to 20. The internal
statements of the loop are repeated 21 times. The termination of the loop depends on the
value of variable number_to_print. Program For20.java is a rewritten version of pro-
gram While20.java. A for loop is used in For20.java instead of a while loop. Although
they are written by using different looping mechanisms, programs For20.java and
While20.java perform in exactly the same way.

for loops are convenient when we want to repeat something a certain number of
times in a program. Typically, for loops are controlled by a single integer variable
(number_to_print in For20.java) which is either incremented or decremented each
time the internal statements of the loop have been executed. The general structure of a typ-
ical for loop is described in Figure 6-6. for loops are not that much different from while
loops. The termination of both loops is controlled by a single boolean expression. When
the boolean expression is or becomes false, the execution of the program continues from
the statement that follows the loop. The essential difference between a while loop and a
for loop is that a for loop has three "things" inside parentheses () after keyword for,
whereas a while loop has only one "thing", the boolean expression, inside parentheses
after keyword while. The assignment statement that is the first thing in parentheses in
Figure 6-6 will be executed before anything else takes place, and that statement is exe-
cuted only once. The third thing in parentheses, the increment or decrement statement, is
executed always after the internal statements of the loop have been executed.

Everything that can be done with a for loop in a program can also be done with a
while loop. Figure 6-7 shows how a for loop can be converted into a while loop. The
assignment statement, that is the first item inside parentheses of the for loop, can be writ-
ten as a statement that precedes the while loop. The increment or decrement statement,
that is the last item inside parentheses of the for loop, can be added as the last statement
to the body of the while loop. As the increment or decrement statement is executed
equally as many times as the internal statements of a for loop, it is logical to include it in
the internal statements of the corresponding while loop.

Figure 6-6. Typical structure of a for loop.

Statements preceding the for loop.

for (assignment statement ;
 boolean expression ;
 increment or decrement statement)
{

One or more internal statements that will be repeatedly executed
as long as the boolean expression given above is true. When the
boolean expression becomes false, the statements that follow this
for loop will be executed.

}

Statements following the for loop.

6.4 for loops repeat a known number of times 159

// For20.java (c) Kari Laitinen

class For20
{
 public static void main(String[] not_in_use)
 {
 int number_to_print ;

 System.out.print("\n Numbers from 0 to 20 are the following:\n\n ") ;

 for (number_to_print = 0 ;
 number_to_print <= 20 ;
 number_to_print ++)
 {
 System.out.print(" " + number_to_print) ;
 }
 }
}

Inside the parentheses after the keyword for, for loops have three "things"
separated with two semicolons. In this loop

• the assignment statement number_to_print = 0 will be executed
before the program actually starts looping,

• the boolean expression number_to_print <= 20 decides when the loop
terminates, and

• the increment statement number_to_print ++ will be executed each
time after the internal statement of the loop has been executed.

In the same way as in the case of while
loops, the internal statements of for loops
are written inside braces. The internal state-
ments of a loop can also be called with the
term "body of the loop".

This statement is the only statement
inside the loop. The statement will be exe-
cuted 21 times. When the value of
number_to_print is 20, it will be incre-
mented to 21, resulting in that the boolean
expression
 number_to_print <= 20
is not true any more, and the loop termi-
nates.

For20.java - 1. Program While20.java implemented with a for loop.

For20.java - X. The program produces the same output as program While20.java

D:\javafiles2>java For20

 Numbers from 0 to 20 are the following:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

160 Chapter 6: Decisions and repetitions: basic activities in programs

Loops and if constructs can be mixed in a program. A loop can contain an if con-
struct, and a loop can be written inside an if construct. Program Forcodes.java shows
how an if construct can be one of the internal statements of a for loop. When the internal
statements of the for loop of Forcodes.java are repeated, the internal statements of the
if construct are executed when the boolean expression of the if construct is true.

Forcodes.java prints characters and their character codes in the range from 20H to
7FH (from 32 to 127 in decimal). The program must repeat the internal statements of the
loop 96 times to perform the entire printing operation. Because we know beforehand how
many times the loop must be repeated, a for loop is convenient in this program. To print
the characters and character codes from 20H to 7FH, the loop control variable named
numerical_code is set to value 0x20 at the beginning and the loop terminates when
numerical_code reaches value 0x80. A for loop is typically such that its loop control
variable is given a certain initial value, and its value is incremented or decremented until it
reaches a certain terminal value. In program Forcodes.java, the loop control variable
numerical_code passes through all values from 20H to 7FH while the loop is being exe-
cuted.

Hexadecimal literals 0x20 and 0x80 are used in Forcodes.java. The prefix 0x is
needed when a programmer wants to write a numerical literal in hexadecimal form in
Java. When the compiler recognizes the prefix 0x, it knows that it is a hexadecimal num-
ber. Without a prefix, the compiler assumes numerical literals to be in the normal decimal
form. It is often convenient to think of character codes in hexadecimal form. However, if
you found hexadecimal literals difficult in Forcodes.java, you could replace 0x20 with 32
and 0x80 with 128 without making any functional changes in the program.

Figure 6-7. Converting a for loop into a while loop

Statements preceding the loop.

for (assignment statement ;
 boolean expression ;
 increment or decrement statement)
{

Internal statements of the loop.
}

Statements following the loop.

Statements preceding the loop.

assignment statement ;

while (boolean expression)
{

Internal statements of the loop.

 increment or decrement statement ;
}

Statements following the loop.

6.4 for loops repeat a known number of times 161

As program Forcodes.java must print 96 different characters and their character
codes and also insert spaces to separate the characters and codes, it is impossible to print
everything on a single line on the computer's screen. For this reason, the program brings a
new line into use after it has printed 8 characters and codes on the current line. The pro-
gram uses the variable number_of_codes_on_this_line to count how many character
codes it has processed. The if construct in the body of the for loop monitors the value of
this variable. When number_of_codes_on_this_line reaches the value 8, a newline
character is printed and the value of the variable is made zero again.

In the case of each numerical code Forcodes.java first prints the character and then
the numerical code in hexadecimal form. For example, when the value of variable numer-
ical_code is 54H, the program prints "T 54 ". The program does not use letter H to indi-
cate hexadecimal numbers. To convert a numerical code into a character, the program
copies the numerical code into a variable of type char in the statement

char character_to_print = (char) numerical_code ;

which both declares the variable and copies a value to it. The marking (char) in the
above statement is an explicit type conversion that converts the value of numerical_-
code to type char before the assignment takes place. Without the explicit type conver-
sion, the above assignment is not possible. After the above statement has been executed,
both variables, character_to_print and numerical_code, contain the same numeri-
cal value. But the contents of variable character_to_print will be printed as a charac-
ter because it is of type char. Here you must remember that all variables in a computer's
main memory contain nothing but binary numbers, zeroes and ones. But in a program
which uses the variables in a computer's memory, the binary information stored in the vari-
ables can be interpreted in different ways, depending on the type of the variable. In
Forcodes.java, the numerical information stored in variable numerical_code is consid-
ered to be numerical information, but when the same information is stored in the variable
character_to_print, it is treated as a character symbol.

Exercises related to while loops
Exercise 6-5. Which numbers would be printed to the screen if the lines

int growing_number = 1 ;
int shrinking_number = 20 ;

while (growing_number < shrinking_number)
{
 System.out.print(" " + growing_number
 + " " + shrinking_number) ;

 growing_number = growing_number + 2 ;
 shrinking_number = shrinking_number - 3 ;
}

were executed on a computer? How would the output of the above while loop change if the
internal statements of the loop were put in an opposite order, i.e., if the output statement came
after the assignment statements?

Exercise 6-6. Make a copy of program While20.java, and name the new file Whileodd.java. Modify the
new program so that it prints only the odd numbers in the range from 0 to 20.

162 Chapter 6: Decisions and repetitions: basic activities in programs

// Forcodes.java (c) Kari Laitinen

class Forcodes
{
 public static void main(String[] not_in_use)
 {
 int number_of_codes_on_this_line = 0 ;

 System.out.print("\n The visible characters with codes from 20"
 + "\n to 7F (hexadecimal) are the following:\n\n ");

 for (int numerical_code = 0x20 ;
 numerical_code < 0x80 ;
 numerical_code ++)
 {
 char character_to_print = (char) numerical_code ;

 System.out.print(character_to_print + " ") ;
 System.out.printf("%x ", numerical_code) ;

 number_of_codes_on_this_line ++ ;

 if (number_of_codes_on_this_line == 8)
 {
 System.out.print("\n ") ;
 number_of_codes_on_this_line = 0 ;
 }
 }
 }
}

Here a variable of type char is declared inside the
for loop, and the value of numerical_code is copied
into the variable. Variable character_to_print is
printed as a character because it is of type char. Vari-
able numerical_code is printed as numerical digits
because it is of type int.

We say that a program prints a newline,
when a new empty line is started on the
screen. A newline can be printed simply by
outputting character \n which means actually
a character which has character code 0AH
(10 decimal).

Forcodes.java - 1.+ A program that prints a character code table.

By using the printf() method
and the format specifier %x, it is pos-
sible to print the value of an int
variable in hexadecimal form. The
current value of numerical_code
replaces the format specifier %x in
the string "%x ". In practice this
means that a space character is
printed after each hexadecimal code.

This if construct ensures that the program
prints a newline after eight characters and their
character codes have been printed. The bool-
ean expression of the if construct becomes
true in every 8th repetition of the loop. The
program prints altogether 96 characters and
character codes on 12 lines.

6.4 for loops repeat a known number of times 163

 for (int numerical_code = 0x20 ;
 numerical_code < 0x80 ;
 numerical_code ++)
 {
 char character_to_print = (char) numerical_code ;

 System.out.print(character_to_print + " ") ;
 System.out.printf("%x ", numerical_code) ;

 number_of_codes_on_this_line ++ ;

 if (number_of_codes_on_this_line == 8)
 {
 System.out.print("\n ") ;
 number_of_codes_on_this_line = 0 ;
 }
 }

The internal statements of the
loop will be repeatedly executed as
long as the value of numerical_-
code is less than 80H (128 deci-
mal).

It is possible to declare and initialize a variable inside
the parentheses of a for loop. Because the initial value of
the variable numerical_code is 20H (32 decimal), a
space is the first character to be printed. 20H is the charac-
ter code of the space character. By adding the prefix 0x
before the actual number, you can define a hexadecimal
literal constant in Java. 0x20 means the same as 32.

Variable numerical_-
code is incremented by one
every time after the internal
statements of the loop have
been executed once.

Forcodes.java - 1 - 1. The for loop which prints the characters and character codes.

Forcodes.java - X. The 96 characters and character codes printed by the program.

D:\javafiles2>java Forcodes

 The visible characters with codes from 20
 to 7F (hexadecimal) are the following:

 20 ! 21 " 22 # 23 $ 24 % 25 & 26 ' 27
 (28) 29 * 2a + 2b , 2c - 2d . 2e / 2f

 0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37
 8 38 9 39 : 3a ; 3b < 3c = 3d > 3e ? 3f
 @ 40 A 41 B 42 C 43 D 44 E 45 F 46 G 47
 H 48 I 49 J 4a K 4b L 4c M 4d N 4e O 4f
 P 50 Q 51 R 52 S 53 T 54 U 55 V 56 W 57
 X 58 Y 59 Z 5a [5b \ 5c] 5d ^ 5e _ 5f
 ` 60 a 61 b 62 c 63 d 64 e 65 f 66 g 67
 h 68 i 69 j 6a k 6b l 6c m 6d n 6e o 6f

 p 70 q 71 r 72 s 73 t 74 u 75 v 76 w 77
 x 78 y 79 z 7a { 7b | 7c } 7d ~ 7e ¦ 7f

164 Chapter 6: Decisions and repetitions: basic activities in programs

6.5 do-while loops execute at least once

Both while loops and for loops have a boolean expression which decides whether the
internal statements of the loop are executed or not. The boolean expression is checked
first, and the internal statements are executed afterwards if the boolean expression was
true. The statements inside while and for loops are not executed at all if the boolean
expression is false at the beginning. Sometimes it is necessary that a loop is executed zero
times, but in some other cases we need loops to execute their body, the internal statements,
at least once. For such situations, Java provides a third possibility to construct a loop.
These loops are called do-while loops.

Figure 6-8 shows the basic structure of a do-while loop. The essential difference
between while loops and do-while loops, is that in while loops the value of the boolean
expression is evaluated at the beginning, whereas in do-while loops the boolean expres-
sion is evaluated after the internal statements have been executed. For this reason, the
internal statements of a do-while loop are executed at least once.

Program Meanvalue.java calculates the mean value of the integers read from the
keyboard. It uses a do-while loop to read the integers and simultaneously calculate the
sum of the integers read. The boolean expression of the do-while loop causes it to termi-
nate when the user types in a zero from the keyboard. After the do-while loop the pro-
gram calculates the mean value as it knows the sum of the integers and how many integers
were entered from the keyboard. Note that an if construct is used in the program Mean-
value.java to ensure that there were non-zero number of integers entered from the key-
board. No mean value can be calculated if no integers other than the zero were entered.

In program Meanvalue.java the following statement calculates the mean value:

mean_value = (float) sum_of_integers /
 (float) number_of_integers_given ;

The term (float) in the assignment statement above means that the int variables
sum_of_integers and number_of_integers_given are converted to type float
before division. This kind of conversion is called explicit type conversion. In the above
case, type conversion is necessary to get accurate division results. You can make these
kinds of type conversions for any variable type by writing the destination type in parenthe-
ses before the variable name. Explicit type conversion has a local effect to the type of a
variable. The converted value is used only in that place of a program where (some type) is
written. For example in the statement above, the value of int variable sum_of_-
integers is treated as a float value, but the variable still remains as an int variable,
and it would be treated as such if it were used later in the program.

Figure 6-8. The structure of do-while loops.

do
{

One or more statements that will be first executed once, and then
repeatedly executed as long as the boolean expression, given
below in parentheses, is true.

}
 while (boolean expression) ;

6.5 do-while loops execute at least once 165

// Meanvalue.java (c) Kari Laitinen

import java.util.* ;

class Meanvalue
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 int integer_from_keyboard = 0 ;
 int number_of_integers_given = -1 ;
 float mean_value = 0 ;
 int sum_of_integers = 0 ;

 System.out.print("\n This program calculates the mean value of"
 + "\n the integers you enter from the keyboard."
 + "\n Please, start entering numbers. The program"
 + "\n stops when you enter a zero. \n\n") ;

 do
 {
 System.out.print(" Enter an integer: ") ;
 integer_from_keyboard = keyboard.nextInt();

 number_of_integers_given ++ ;
 sum_of_integers = sum_of_integers + integer_from_keyboard ;
 }
 while (integer_from_keyboard != 0) ;

 if (number_of_integers_given > 0)
 {
 mean_value = (float) sum_of_integers /
 (float) number_of_integers_given ;
 }

 System.out.print("\n The mean value is: " + mean_value + " \n") ;
 }
}

This do-while loop reads the integers and calculates their
sum. do is a reserved keyword of Java. The internal statements
of a do-while loop, which are always executed at least once,
are given inside braces immediately after the keyword do.

This program calculates the mean value
only if some numbers were actually entered
from the keyboard. Without this if con-
struct, the program could carry out a division
by zero which might result in serious prob-
lems when the program is executed.

Meanvalue.java - 1. A program to calculate the mean value of a set of integers.

-1 is the initial value of the
variable that counts how many
integers have been entered
from the keyboard. This way
the last integer, a zero, is not
calculated in the sum of the
integers.

There must be a semicolon to terminate a
do-while loop. The boolean expression is
always evaluated after the internal statements
of the loop have been executed once. Here, the
boolean expression is constructed by using
operator !=, "not equal".

166 Chapter 6: Decisions and repetitions: basic activities in programs

Meanvalue.java - X. The program calculates here the mean value of four integers.

D:\javafiles2>java Meanvalue

 This program calculates the mean value of
 the integers you enter from the keyboard.
 Please, start entering numbers. The program
 stops when you enter a zero.

 Enter an integer: 222
 Enter an integer: 333
 Enter an integer: 444
 Enter an integer: 555
 Enter an integer: 0

 The mean value is: 388.5

Exercises with loops
Exercise 6-7. Make a copy of program Whilesum.java, and modify the new file so that the program calcu-

lates how many integers the user has entered from the keyboard. The program must stop read-
ing in new integers when the user has entered 10 integers.

Exercise 6-8. Make a copy of program Meanvalue.java, and modify the new file so that the program prints
the current mean value each time a new integer has been entered from the keyboard.

Exercise 6-9. Write a program that prints a conversion table from miles to kilometers or from kilometers to
miles. The program must first ask what kind of conversion table the user wants. After having
asked this, you need an if construct in the program. The program must use either a for or a
while loop to print the conversion table. The program must print at least 15 conversion lines,
for example, in the following way:

 miles kilometers

 10 16.09
 20 32.19
 30 48.28
 . .
 . .
 . .
 140 225.30
 150 241.40

Exercise 6-10. In Chapter 5 there is an exercise which explains how to convert degrees Celsius to degrees
Fahrenheit. Write a program that prints a Celsius to Fahrenheit conversion table. Use a for
loop in your program.

Exercise 6-11. Write a program that can display the character code of any character that is entered from the
keyboard. The program should read characters in a loop and print their character codes. The
character code must be printed both in hexadecimal and decimal form. You can use program
Forcodes.java as an example, but it is better to use a while loop in this kind of a program. The
program should stop asking new characters when the user enters a special character like % or
&.

