CHAPTER 6

DECISIONS AND REPETITIONS: BASIC ACTIVITIES IN PROGRAMS

So far, our programs have been made of statements that declare variables, assignment
statements, input statements, and output statements. Assignment statements, which we
studied in the previous chapter, are fundamentally important action statementsin computer
programs. With an assignment statement, we can copy the contents of one variable into
another variable, or we can produce a new value for avariable by inserting an arithmetic
expression to the right side of an assignment operation. Assignment statements always
write to alocation in the main memory of a computer.

In this chapter, we will study more fundamental statements used in computer program-
ming. You will learn to write statements that make decisions (selections) and perform rep-
etitions. Decisions madein a program result in some statements being executed and others
not being executed. Performing repetitions means that one or more statements can be exe-
cuted many times. Java provides i £ and switch statements for making decisions, and
while, for, and do-while statements for performing repetitions. In this book, i £ state-
ments are usually called i £ constructs, and while, for, and do-while Statements are
called loops.

© Copyright 2006-2013 Kari Laitinen

All rights reserved.

These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
aswho want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of alarger publication. Neither it is allowed to store these pagesin
aretrieval system or lend these pagesin public or private libraries.

For more information about Kari Laitinen’s books, please visit
http://www.natural programming.com/

134

Chapter 6: Decisions and repetitions: basic activitiesin programs

6.1 Making decisions with keywords if and else

Theword "if" in our natural language expresses a condition. We can say: "If the weather is
warm and sunny tomorrow, let's go to the beach." The word "if" isused in asimilar way in
Java. if isakeyword that identifies the basic decision-making mechanism of Java.

if statements, which we often call i £ constructs, are used to make decisionsin Java
The structure of the simplest i£ construct is described in Figure 6-1. An if construct
aways contains a boolean expression that can be either true or false. Boolean expressions
are named after George Boole (1815 - 1864) whose ideas have deeply influenced comput-
ing and programming.

Boolean expressions define conditions. In i£ constructs, the boolean expression is
given in parentheses () after the keyword i£. Every boolean expression has a truth value
which is always either true or false, but not both. Provided that the boolean expression is
true, the statements inside the braces { } after the boolean expression will be executed. If
the boolean expression is false (i.e. not true), the statements inside the braces will not be
executed, and the execution of the program continues from the statement that follows the
closing brace of the i £ construct.

if (boolean expression)

{

One or more statements that will be executed if the boolean
expression, given in parentheses above, istrue. These statements
will not be executed at all if the boolean expression isfase (i.e.
not true).

Figure 6-1. The structure of asimpleif construct

if (boolean expression)

{

One or more statements that will be executed if the boolean
expression, given in parentheses above, istrue.

}

else

{

One or more statements that will be executed if the boolean
expression, given in parentheses above, is false (i.e. not true).

Figure 6-2. The structure of an if-else construct

6.1 Making decisionswith keywordsif and else 135

A more advanced form of if statement isan if-else construct which contains two
Java keywords, if and else. The structure of if-else construct is explained in Figure
6-2. The if-else construct has two blocks of statements, and only one block of state-
ments will be executed. When one or more statements are inside braces{ }, we can call
the group of statements an embraced block of statements, or smply ablock. In if-else
constructs, depending on the truth value of the boolean expression, either the first block of
statements or the second block, but never both, will be executed. The i £-else construct
thus makes a decision as to which program block will be executed.

Program L argeint.java is an example where two decisions are made with keywords
if and else. Thefirst decision is made with an i £-else construct. The second decision
ismadewith asimple i £ construct. The program is ableto find the largest of three integers
that the user types in from the keyboard. First the program decides which is larger of the
first two integers. Then it decides whether the third integer is larger than the largest of the
first two integers.

Boolean expressions have a truth vaue, either true or false. To write a boolean
expression we need operators that can describe situations that are either true or false. Rela-
tional operators, which arelisted in Table 6-1, are common in boolean expressions. In pro-
gram L argeint.java, the relational operator < isused in the boolean expression

(first_integer < second integer)

to test whether it is true that the value of the variable first integer is less than the
value of the variable second_integer. A common use for relationa operatorsisto com-
pare values of variables, but relational operators can aso take numerical values as oper-
ands. For exampl e, the boolean expression

(some variable == 0)

tests whether the contents of some_variable iSzero. If the contents of some_variable
is zero, then the expression above istrue, otherwiseit isfalse. Because relational operators
compare variables and other values, they are also called comparison operators.

Operator ==, like most of the relational operator symbols, consists of two characters.
There should be no spaces between the two characters. Writing, for example, = = will
result in a compilation error. The compiler would interpret the two equa signs separated
with a space as two adjacent assignment operators.

Table 6-1: Therelational operators of Java

Operator symbol Operator name
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
1= not equal

1

36 Chapter 6: Decisions and repetitions: basic activitiesin programs

! This program shows that variable declarations do not need to be

: the first statements of a program. This statement, which is written

: after a couple of action statements, both declares a variable of type

: int and assigns a value to the declared variable by reading avalue

: from the keyboard. By using these kinds of statementsit is possible to
make programs somewhat shorter. This single statement means the

// Largeint.java same as the two statements

int first integer ;

import Jjava.util.* ; . .
P J first integer = keyboard.nextInt();

class Largeint N i oo - -
{ \
public static void main(String[] not in use) '
Scanner keyboard = new Scanner(System.in) ; *
System.out.print("\n This program can find the largest of three" :
+ "\n integers you enter from the keyboard. " '
+ "\n Please, enter three integers separated " .
+ "\n with spaces : ") ; '
int first integer = keyboard.nextInt() ; € ---------- --7
int second integer = keyboard.nextInt() ;
int third integer = keyboard.nextInt() ;
int found largest integer ;
if (first integer > second integer) P o
{
found largest integer = first integer ; N
} |
else \
{)
found largest integer = second integer ; ,
} ‘.
_.> if (third integer > found_largest_integer) !
R ;
N found largest integer = third integer ; :
: } '
. System.out.print("\n The largest integer is " !
| + found largest integer + ".\n") ; ,
L) :
1) S \

Thisisan if-else construct. If the
contentsof first integer iSgreater than
the contents of second_integer, the con-
tentsof £irst integer Will be copied to
found largest integer. Otherwise, the
contents of second_integer Will be cop-
ied to found largest integer.

Thisisthe simplest form of an i £ construct,
containing only the keyword i £. If the contents of
third integer isgreater than the contents of
found largest integer, the contents of vari-
able third integer Will be copied to variable
found largest_integer.

.
F \

Largeint.java- 1.+ A program to find the largest of threeintegers.

6.1 Making decisionswith keywordsif and else 137

; The relational operator >, greater than, is used to define a
' boolean expression which determines which variable shall be
' copiedto found largest integer. '

| ; Note that thereareno
A /+ semicolons (;) following -
if (first integer > second integer) <'. theboolean expressionsof
{ ' if constructs. '
found largest integer = first integer ;. !
})
else !
{ .
found largest integer = second integer ; !
} ;
if (third integer > found largest integer) < --
{
found largest integer = third integer ;
}

Largeint.java- 1-1. Theif constructsthat find the lar gest integer.

D:\javafiles2>java Largeint

This program can find the largest of three
integers you enter from the keyboard.

Please, enter three integers separated
with spaces : 111 222 211

The largest integer 1is 222.

Largeint.java- X. The program finds 222 to be thelargest of 111, 222, and 211.

138

Chapter 6: Decisions and repetitions: basic activitiesin programs

Program Evenodd.java is another example of the use of an i f-else construct. This
program asks the user to type in an integer, and it decides whether the given integer is an
even or odd number. Because even numbers are equally divisible by two, the if-else
construct in the program Evenodd.java simply tests whether it is true that if the given
number divided by two would result in a zero remainder. The boolean expression in Even-
odd.javais

((integer from keyboard % 2) == 0)

and it contains the arithmetic expression (integer from keyboard % 2). The % oper-
ator is an arithmetic operator belonging to the same category as +, -, *, and /. Operator %
returns the remainder that would result if itsleft operand were divided by its right operand.
In the expression above, % returns the remainder that would result if the value of variable
integer from keyboard were divided by two. The value of the variable is not modi-
fied. In the above expression the remainder is calculated first and then the remainder is
compared to zero. The relational comparison operator returns true when the remainder is
zero. Otherwise it returns fal se.

When integers are divided by two, the remainder is always zero or one, depending on
whether the integer is even or odd. Asthere are only two possible values for the remainder
in divisions by two, the boolean expression

((integer from keyboard % 2) != 1)

could replace the boolean expression used in the program Evenodd.java and the program
would work equally well. Operator != returns true when its operands are not equal. Bool-
ean expressions can often be written either with operator == (equal) or with operator !=
(not equal). When possible, it is better to use operator ==, because it is usually easier to
understand.

Theremainder operator %

The remainder operator %, which is sometimes called the modulus operator, is used with integers only. Division
operations with integers are sometimes inaccurate because computers do not round numbers upwards. For example,
the division operation 11/4, eleven divided by four, would be evaluated to 2 although 3 would be closer to the cor-
rect value. Computers do not obey human division rules. In division operations involving integers, computers
aways round downwards. For this reason, the remainder operator % is sometimes useful. To understand operators/
and % properly, below are some correct calculations for you to study.

0w 9N R
NN NN
S N S I V)

14 / 5

101 / 10 iS 10 101 % 10 iS 1

»
N B B O
(IR Ve
o® o° o° o°
[N S I N)
)
H W o R

is 2 14 %5 is 4

6.1 Making decisionswith keywordsif and else 139

.' This program is based on the fact that even numbers are ;
: equally divisible by two. (integer from keyboard % 2) :
i is an arithmetic expression that is part of the boolean expres- ;
! sion of thisi £ construct. % isthe remainder operator of Java. ;
: In this case, % returns the remainder that would result if :
integer from keyboard weredivided by two. Witheven

numbers the remainder is zero, making the boolean expres-
sion true.

// Evenodd.java (c¢) Kari Laitinen

import java.util.* ;

7

class Evenodd

{ .
public static void main(String[] not_in use) |
{ \
Scanner keyboard = new Scanner(System.in) ; !
int integer from keyboard ; :
System.out.print("\n This program can find out whether an integer"
+ "\n is even or odd. Please, enter an integer: ") ; !
integer from keyboard = keyboard.nextInt() ; ¢
if ((integer_ from keyboard % 2) == 0) <----- L
{
System.out.print("\n " + integer from keyboard + " is even.\n") ;
}
else
{
System.out.print("\n " + integer from keyboard + " is odd. \n") ; < _
} ‘I
} ;
}

.' This statement will be executed when the boolean expres- ‘;
. sion, given in parentheses after the keyword if, is false. ;

D:\javafiles2>java Evenodd

This program can find out whether an integer
is even or odd. Please, enter an integer: 12345

12345 1is odd.

Evenodd.java - X. The program executed with input value 12345.

140 Chapter 6: Decisions and repetitions: basic activitiesin programs

In most cases, thereis no single way to write a computer program to accomplish the
desired program behavior and functionality. Thisis generally true also for boolean expres-
sions. For example, all the following boolean expressions mean the same

(first_integer < second integer)

(second integer > first integer)

((second integer - first integer) > 0)

((first integer - second integer) < 0)
((first integer + 1) <= second integer)

It is, however, good programming practice to try to write smple, non-complex, and ele-
gant programs. For this reason, the last three boolean expressions would not be appropri-
ate choices because they are made unnecessarily complex by using arithmetic operators.

Figure 6-3 shows the structure of alarge i£ construct, the if-else if-else CON-
struct. Such a construct consists of three parts: an i £ part, an else if part, and an else
part. Each part contains an embraced program block. The execution of the program blocks
is controlled by two boolean expressions. To be accurate, the program construct described
in Figure 6-3 actualy consists of two if-else constructs. The else-if part starts the
second if-else construct. The second else-if construct does not have any braces
around itself. You will understand this more clearly when the use of braces in Java pro-
gram constructs is discussed in more detail in Section 6.6.

The if structure explained in Figure 6-3 isused in program Likejava.java. The i £-
else if-else construct selects one of three program blocks to be executed. It is possible
to write even more complex if constructs by adding more else if parts between the i £
part and else part. Program | ffing.java is an example wherethree else if partsare used
inasingle i £ construct. In summary, we can state the following facts about i £ constructs:

* Every if construct containsan if part.
e if constructs can contain zero, one, or more else if parts.
» if constructs contain zero or one else parts.

if (booleanexpressionl)

{

One or more statements that will be executed if and only if
boolean expression 1istrue.

}

else if (boolean expression?2)

{

One or more statements that will be executed if and only if
boolean expression 2 is true and boolean expression 1isfase.

}

else

{

One or more statements that will be executed if and only if
neither boolean expression 1 nor boolean expression 2 istrue.

Figure 6-3. The structure of an if-else if-else construct.

6.1 Making decisionswith keywordsif and else 141

Both programs Likejava.java and | ffing.java investigate what is the character code
of the character that the user typed in from the keyboard. Character coding systems were
discussed in Chapter 3. Java uses a character coding system called Unicode in which each
character is coded with a 16-bit value. In practice, however, the character codes of the
English characters as well as many other European characters can be expressed with 8 bits,
and the 8 most significant bits of these character codes are zeroes. In Java, single quotes
are used to refer to the character codes of characters. For example,

*y' means the character code of Y (89, 59H)

'n' meansthe character code of n (110, 6EH)
191 meansthe character code of 9 (57, 39H)

+ '+ meansthe character code of space (32, 20H)

By using single quotesit is possible to refer to a character code without remembering
the numerical value of the character code. When 'Y' appears in a program, it means the
same as the numerical literal constant 89, the character code of uppercase letter Y. For a
Java compiler, the relational expression

(character from keyboard == 'Y')
and the relational expression
(character from keyboard == 89)

are technically the same, but for a human reader they are different and the first form is eas-
ier to understand. It is difficult to remember the character codes of all characters. There-
fore, the meaning of 'Y' is easier to grasp than the meaning of 89. In the terminology of
programming languages, characters inside single quotes, such as 'Y', 'n’, '9', and ' ', are
called character literals. In addition to character literals, we also need string literals like
"Hello!" in our programs. In Java, character literals are written with single quotes and
string literal s are written with double quotes.

Programs Likejavajava and Iffing.java introduce new operators caled logical
operators. These operators can combine several relational expressions into a single bool-
ean expression. For example, in the boolean expression

((character from keyboard == 'Y') |
(character from keyboard == ‘'y'))

the logical-OR operator || combines two relational expressions. The logical-OR operator ||
returns true if either or both of its operands, the relational expressions, are true. The logi-
cal-OR returns false only when both of its operands are false. The truth value of the bool-
ean expression above is evaluated so that the truth values of the relational expressions are
evaluated first, and these truth values are then joined with the logical-OR operator ||. If the
contents of variable character from keyboard were 121, which is'y', the relational
expressions would have the following truth values

(character from keyboard == 'y') wouldbefase
(character from keyboard == ‘'y') wouldbetrue

The truth value of the entire boolean expression would be true because the logical-OR
operation result for false and true is true. (To be accurate, the logical-OR operator || works
so that it does not check the truth value of its second operand if its first operand makes the
entire boolean expression true.)

142

This statement reads a value for the char variable
character from keyboard. Thisisachieved by
first reading aline of text from the keyboard, and then
using the charat () method to take the first character
of thetext line.

// Likejava.java (c) Kari Laitinen

import java.util.* ;

. class Likejava

{
{

Scanner keyboard

char character from keyboard ;

' + "\n Please,

character from keyboard

if ((character from keyboard
(character from keyboard
{

}

else if (

System.out.print("\n That's

Chapter 6: Decisions and repetitions: basic activitiesin programs

nice

(character from keyboard

(character from keyboard

{
System.out.print (
+

}

else

{

System.out.print (
+

;' This statement will be executed if

: character from keyboard contains
© something other than’Y”,’y’, "N’, or 'n’.
; Note that if you want to include a double
' quote character (") among the text to be

' printed, you must write a backslash \

© beforeit.

1
’

"\n That is not
"\n I hope you change your mind soon.\n") ;

keyboard.

: 'Y’ isacharacter literal which
. means 59H, the character code of
: uppercase letter Y. Single quotes
are used to write character literals
+ inJava. Character literals are

. sometimes called character con-

+ stantsor literal character con-

' stants.

public static void main(String[] not in use)

new Scanner(System.in) ;

System.out.print("\n Do you like the Java programming language?"
answer Y or N :

") o
nextLine() .charAt(0) ;

'Yt || €--oe o
yro))

hear.

INI)
nt))

so nice to hear.

"\n I do not understand \""
character from keyboard

||\||'\n||) ;

+

This boolean expression is true
if character from keyboard
contains either the character code
for uppercase N or lowercasen. || is
the logical-OR operator which can
combine relational expressions.

Likgavajava- 1.+ A program containing an if-elseif-else construct.

6.1 Making decisionswith keywordsif and else 143

' Thisisarelational expression which istrue when variable
character_ from keyboard containsthe character codeof
uppercase Y (59H). Therelational expression isinside paren-

theses and it is made with relational operator ==. ! T

Thislogical-OR opera- ,
tor | | combines the two :
.- relational expressionsinto '

/! oneboolean expression, ;

—_— ;' whichistruewhenat least !

. £ + one of the relational :

if ((character from keyboard == 'Y') || ' : ; ,
- - '+ expressionsistrue. The

(character from keyboard == 'y')) ' . . \

- - ' entire boolean expression ;

- + isfalse only when both :

A ' relational expressions are :

e . . - false. y

Thisis another relational expression, and it is true when "
' character_from keyboard contains 79H, the character .
' codeof lowercasey. .

Likgava.java- 1-1. Thefirst boolean expression in the program.

D:\javafiles2>java Likejava

Do you like the Java programming language?
Please, answer Y or N : y

That's nice to hear.

D:\javafiles2>java Likejava

Do you like the Java programming language?
Please, answer Y or N : Zz

I do not understand "z".

Likgava.java - X. The program is executed heretwice, with inputsy and z.

144 Chapter 6: Decisions and repetitions: basic activitiesin programs

Character codes are tested in these bool ean expressions. Codes \
that are less than 20H are non-printable characters. Numbers arein l
the range from 30H to 39H, uppercase letters in the range from 41H l
// Iffing.java to 5AH, and lowercase lettersin the range from 61H to 7AH. * l
means the character code of space (20H), '9'" means the character I
code of digit 9 (39H). & & isthelogical-AND operator which returns

true only if the relational expressions on both sides of & & are true. ;
class Iffing \ ’

public static void main(String[] not_in use) o
{ [

Scanner keyboard = new Scanner(System.in) ; '

7

import java.util.* ;

char given character ;

'
'
\

7
'
'
'

System.out.print("\n Please, type in a character: ") ; .::
given character = keyboard.nextLine().charAt(0) ; S :h
if (given character < ' ') S - Co
System.out.print("\n That is an unprintable character \n") ; . ﬂ
} o
else if (given character >= '0' && given character <= '9') .-~ [
{ o
System.out.print("\n You hit the number key " S
+ given character + ". \n ") ; o
else if (given character >= 'A' && given character <= 'Z') <---~ !
{ !
System.out.print("\n " + given character '
+ " is an uppercase letter. \n") ; '
} o
else if (given character >= 'a' && given character <= 'z') <«---~
System.out.print("\n " + given character
+ " is a lowercase letter. \n")
}
else
{
System.out.print("\n " + given character
+ " is a special character. \n") ;
}

}
Iffingjava - 1. A program that contains a complex if construct.

D:\javafiles2>java 1ffing

Please, type in a character: =z

z is a lowercase letter.

Iffing.java - X. The program executed with input z.

6.1 Making decisionswith keywordsif and else 145

Program Iffing.java examines the character code of the character that it receives
from the keyboard. It can find out whether the character is an unprintable character, a
number, an uppercase |etter, or alowercase |etter. If the character is none of these, the pro-
gram assumes that the character is a punctuation character or some other special character.
Iffing.java has the boolean expression

(given character >= '0°' && given character <= '9')

to check whether variable given_character containsthe character code of anumber. In
this boolean expression the logical-AND operator (& &) is used to combine the two rela-
tional expressions. The logical-AND operator returns true only when both of its operands
aretrue. In the above boolean expression, the relational expressions are the operands of the
logica-AND operator. If either or both of the relational expressions is false, the entire
boolean expression is false. When variable given character contains a value that is
greater or equal to the character code of zero (30H) and less than or equal to the character
code of nine (39H), the boolean expression aboveistrue.

The boolean expression above could be written, without changing its meaning, with
extra parentheses, in the following way

((given_character >= '0') && (given_character <= '9'))

but the extra parentheses are not necessary because the operator & & has a lower prece-
dence than the relational operators >= and <=. Precedence of operators means the order in
which the operators take effect. Operators with higher precedence are applied before oper-
ators with lower precedence. In the boolean expression above, operators >= and <= take
precedence over operator & & . You can think that the program first evaluates the truth val-
ues of the relational expressions

given character >= 1'0'
given character <= '9'

and then the calculated truth values are used in a logical-AND operation. In reality, how-
ever, the truth value of the second operand is not checked in alogical-AND operation if
the first operand of & & isfalse.

Java operators are listed in the order of their precedence in Appendix A. The official
precedence of operators can always be overridden with parentheses. For example, the mul-
tiplication operator * has a higher precedence than the addition operator +, but with paren-
theses this precedence can be changed. The following example shows the effect of the use
of parentheses:

2 * 5 4+ 4 would be evaluated to 14, but
2 * (5 + 4) wouldbeevauated to 18.

The logical operators are listed in Table 6-2 and their behavior is summarized in
Table 6-3. The NOT operator ! is said to be an unary operator because it takes only one
operand. The NOT operator complements the truth value of its operand expression. Com-
plementing is sometimes called inverting or reversing. Complementing means that either
true becomes false or false becomes true. The NOT operator can be used to write complex
expressions. For example, the expressions

(given character <= '9')
(! (given character > '9'))

mean the same but the latter expression is more difficult to read and understand. It is better
to favor simple expressions. The NOT operator (!) is often useful, but it should not be used
unnecessarily.

146 Chapter 6: Decisions and repetitions: basic activitiesin programs

Table 6-2: Thelogical operators of Java.?

bol !.

Operator Operator name Explanation
symbol
|| Logica OR Logical OR returnstrueif either or both of its
operand expressions is true.
&& Logical AND Logical AND returns true only if both of its
operand expressions are true.
! NOT NOT operator complements the truth value of

the expression to the right of the operator sym-

a Javahasoperators& and | which work in many caseslike operators & & and ||, respec-
tively. It is, however, better to use operators & & and || when you write boolean ex-
pressions for i £ constructs and loops. Operators & and | will be discussed in Chapter

16.

Table 6-3: Thetruth values of logical operations. (a and b can be
variables or expressions.)

a b a ||l b |as&b ! ! b
fase fase fase fase true true
fase true true fase true fase
true false true false false true
true true true true fase fase

Exercisesrelated toif constructs

Exercise 6-1.

Exercise 6-2.

Make a copy of program L argeint.java. You might name the new file Largest4.java. Modify
the new file so that it asks for four integers from the keyboard and finds the largest of the four
integers. Having done that, make the program find both the smallest and the largest of the four

integers.

Write a program that can convert amounts of currency givenin U.S. dollars to Japanese yen and
vice versa. Check out the latest currency exchange ratesin a newspaper. Your program must
first ask whether the user wants to change dollars to yen or yen to dollars. The program must
have an if construct which selects the right conversion statements. Naturally, if you prefer, you
can also use other currency unitsin your program.

Remember that Appendix C contains advice for programming exercises.

6.2 Making decisions with switch-case constructs 147

6.2 Making decisions with switch-case constructs

Various kinds of i£ constructs are the principal means for making decisions in Java pro-
grams. In addition to 1 £ constructs, Java provides switch-case constructs to make deci-
sions. switch and case are keywords in Java. You can make all decisions with if
constructs, but with switch-case constructs you can sometimes make the decisions with
less writing.

In this section we shall study programs that contain switch-case constructs. You
need to learn these constructs in order to master Java, and to understand programs you find
in the literature. However, because switch-case constructs are not used much in this
book, you can temporarily skip this section if you are eager to learn more interesting
things about Java. You can come back to this section when you see the keywords switch
and case somewhere.

A switch-case construct is sometimes convenient when you need to test the value
of some variable many times. For example, in program Likejava.java the value of vari-
able character from keyboard istested atogether four timesin two boolean expres-
sions. To demonstrate the use of a switch-case construct, the if-else if-else
construct of Likejava.java is replaced with a switch-case construct in Likejavas,java.
Program Likejavasjava is thus a rewritten version of Likeava.java. This again proves
that there can be two programs that behave precisely in the same way although they are
written in different ways.

Figure 6-4 shows how switch-case constructs usually look like. The structure of a
switch-case construct is often such that you test the value of an arithmetic expression,
and jump to different cases in the construct depending on the value of the tested arithmetic
expression. When the program execution goes to some case inside the braces of the con-
struct, the execution continues from that point until a break statement is encountered.
break, Which isareserved word and a statement of its own, has the effect that the execu-
tion of the program breaks out from the area surrounded by braces. Program Sen-
tencejava is an example which further clarifies the role of break statementsin switch-
case constructs.

switch (arithmetic expression)
{
case vy:
Statements which will be executed if the arithmetic expression
has value v,
break ;
case vy:
Statements which will be executed if the arithmetic expression
has value v,
break ;
case vp:
Statements to be executed when the arithmetic expression has
valuevy,
break ;
default:
Statements which will be executed if none of the cases matched
the value of the arithmetic expression
break ;

}

Figure 6-4. The structure of a typical switch-case construct.

148

Chapter 6: Decisions and repetitions: basic activitiesin programs

// Likejavas.java

import java.util.* ;

class Likejavas

Often, switch-case constructs test the value of a
single variable of type char or int. The variable that is
tested is written in parentheses after the keyword
switch. A singlevariableis, in fact, asimple arithmetic
expression. It is also possible to write a more complex
arithmetic expression inside the parentheses. In that
case, switching is carried out according to the evaluated
value of the arithmetic expression.

{ ‘
public static void main(String[] not_in use) \
{ ‘\
Scanner keyboard = new Scanner(System.in) ;
char character from keyboard ; .
System.out.print("\n Do you like the Java programming language?" '
+ "\n Please, answer Y or N : ") !
character from keyboard = keyboard.nextLine().charAt(0) ; L
switch (character from keyboard) R I --7
{
case 'Y':
case 'y':
System.out.print("\n That's nice to hear. \n")
break ;
case I'N':
case 'n':
’,—--> System.out.print("\n That is not so nice to hear. "
’ + "\n I hope you change your mind soon.\n")
break ;
default:
System.out.print("\n I do not understand \"" < - -l
+ character from keyboard + "\".\n")
break ; '
} ;!
} } :

A switch-case congtruct isindeed like a
switch that you can turn to many positions. The
cases inside braces are the possible positions
where the program execution can go in the
switching operation. The execution of the pro-
gram jumps from the keyword switch into this
position when character from keyboard
contains either "N’ or 'n’. The break statements
cause the program execution to jump outside the
switch-case cONnstruct.

The case marked with keyword
default isthe place where the pro-
gram execution jumpsto if none of the
other cases match the contents of
character from keyboard

Likgavasjava- 1. Program Likejava,javarewritten using a switch-case construct.

6.2 Making decisions with switch-case constructs 149

D:\javafiles2>java Likejavas

Do you like the Java programming language?
Please, answer Y or N : 5

I do not understand "5".

Likgjavasjava - X. The program is executed herewith input 5.

Exercisesrelated to boolean expressions

Exercise 6-3. Let'ssupposethat first variable hasvalue5, second variable hasvalue 8, and
third variable containsvalue 14. Write T or F after the following boolean expressions
depending on whether they are true or false!

first_variable < second variable)

third variable < first variable)

! (first variable < second variable))

third variable > first variable)

(first variable + second variable) < third variable)

(first variable + second variable) <= third variable)
(third variable - second variable) > first variable)
first variable == 0)

! (first_variable
first variable
first variable
first variable
first variable

| second variable < 0)
| second variable == 5)
second variable && third variable >= 14)
5 && second variable > 8)

\

0
8

=0))
|
|

A

N~~~ e~~~ A~~~ o~~~ ~

Exercise 6-4. Write the following complex boolean expressionsin asimpler form

(! (some variable == 8))

((some_variable - 10) > 0)

(some_variable < 88 || some variable == 88)
((some_variable - other variable) < 0)

(! (! (some variable < 99)))

150

A

fi

Chapter 6: Decisions and repetitions: basic activitiesin programs

This program, which is a somewhat illogi-
cal program, clarifiesthe role of the break
statementsin switch-case constructs. As a
general rule, programs should not be written
like this. There should always be abreak
statement after the statements of each case in
a switch-case construct.

// Sentence.java
import java.util.* ;

class Sentence

{

This statement reads avalue for the char
variable character from keyboard. The
input from the keyboard is processed so that
first the method nextLine () readsaline of
text, then the method touppercase () con-
verts all characters of the given text line to
uppercase letters, and finally method
charat () takesthefirst character of the text
line. Asthetext characters are converted to
uppercase letters, the user of the program
does not need to worry about the case of the
letters.

public static void main(String[] not in use)

{

Scanner keyboard =
char

System.out.print (

character from keyboard ;

new Scanner(System.in)

1

"\n Type in L, M, or S, depending on whether you want"

+ "\n a long, medium,

character from keyboard =

keyboard.nextLine () . toUpperCase () .charAt(0)

System.out.print (

switch (character from keyboard)

{

case 'L':
System.out.print (
case 'M':
System.out.print (
case 'S':
System.out.print (
default:

System.out.print (

Because there are no break statementsin this switch-
case construct, al statements following a certain case will
be executed. For example, when the user of the program types
in the letter L, all statementsinside the switch-case con-
struct will be executed because case ’ L’ : happensto bethe

rst case.

"\n This is a"

or short sentence displayed: ")

.
7

i <--

7

" switch statement in a \n")
" program in a")
" book that teaches Java programming.")

"\n I hope that this is an interesting book.\n");

Sentencejava- 1. Using a switch-case construct with no break statements.

6.2 Making decisions with switch-case constructs 151

D:\javafiles2>java Sentence

Type in L, M, or S, depending on whether you want
a long, medium, or short sentence displayed: s

This is a book that teaches Java programming.
I hope that this is an interesting book.

D:\javafiles2>java Sentence

Type in L, M, or S, depending on whether you want
a long, medium, or short sentence displayed: L

This is a switch statement in a
program in a book that teaches Java programming.
I hope that this is an interesting book.

Sentence.java - X. The program is executed heretwice, with inputssand L.

152

Chapter 6: Decisions and repetitions: basic activitiesin programs

6.3 while loops enable repetition

At this point you should have redlized that computers are actually quite stupid machines.
To make them do something, you have to very carefully and precisely describe that thing
in asource program. But what computerslack in intelligence they gain in speed. Once you
have written a program that works correctly, computers can execute the program
extremely fast—that is, millions of machine instructions per second. And you can run the
same program equally fast, as many times asyou like, in many different computersif you
choose. Since computers can do things so fast, they can be made to be very effective by
making them repeat things.

Loops are program constructs with which we can make computers repeat things over
and over. As computers are so fast, we can accomplish many things simply by making a
computer repeat a few simple statements. There are several different loop structures in
Java, but thewhile loop can be considered the basic loop. The structure of while loopsis
described in Figure 6-5.

Programs that we have studied so far have been such that they are executed from the
beginning to end, statement by statement. When there are i £ constructsin a program, they
have the effect that some statements may be left unexecuted, but programs with i con-
structs are also executed from the beginning to end. When there are loops in a program,
the execution of statements is not always from the beginning to end. With awhile loop,
for example, there is a possibility to jump backwardsin a program, and execute the inter-
nal statements of the loop over and over. The statements of a program are always executed
in the order they are written in the source program, but a loop allows the program execu-
tion to go through the same statements many times. When awhile loop isencountered in
a program during its execution, we can imagine that the computer follows these three

steps:
Step1. Check the truth value of the boolean expression given in parentheses.

Step2. If the boolean expression is true, execute the internal statements once and go
back to Step 1.

Step 3. If the boolean expression is false (not true), continue by executing the state-
ments that follow thewhile loop in the program.

Statements preceding the while loop.

while (boolean expression)

{

One or moreinternal statements that will be repeatedly
executed as |long as the boolean expression, given in
parentheses above, istrue.

}

Statements following the while loop.

Figure 6-5. The structure of while loops.

6.3 while loops enable repetition 153

Describing while loops with flowcharts

A flowchart isatraditional way to describe the operation of aprogram. A flowchart shows graphically how the pro-
gram control flowswithin a program. Flowcharts are particularly useful to explain how loops operate. Below on the
left you find a flowchart that describes the general operation principle of awhile loop. The flowchart on the right
shows how thewhile loop in program While20.java operates. The arrows in the flowcharts represent movements
from one activity to another in the program. The rectangles describe activities, and the diamond shapes describe
conditions.

Executethe St aIemer_1ts that pre- Set the value of variable
cede the while loop in the pro- .
gram. number_to_print to zero.

Is the value of variable
number_to_print less
than or equal to 20 ?

NO

Is the boolean expres
sion in parentheses
true?

Execute once the internal

statements of the loop. Print a space and the value of

variable number_to_print to the
screen, and after that increment
thevalue of number_to_print by
one.

Continue by executing the state- ‘

ments that follow the loop. When a

while loop isthe last statement in a Stop executing the program
program, there are no statement fol- because there are no statements
lowing the loop, and hence the pro- following the while loop.

gram terminates.

154

Chapter 6: Decisions and repetitions: basic activitiesin programs

Program While20.java is an example where awhile loop is used to print the num-
bers from zero to 20 to the screen. The two statements inside the while loop will be
repeated 21 times when the program isrun. The essential ideain thewhile loop isthat the
internal statements of the loop modify a variable that affects the truth value of the boolean
expression. In While20.java, the value of variable number to print grows inside the
loop. The same variable is tested in the boolean expression, and ultimately the value of
number to print iS S0 big that the boolean expression becomes false, and the loop ter-
minates. When the boolean expression of awhile loop is not true any more, the program
execution continues from the statement that follows the while loop in the program. In
While20.java, the whole program terminates when the while loop terminates because
there are no statements following the while loop.

Program Whilesum.java is another example of the use of awhile loop. The pro-
gram reads integers from the keyboard and maintains the sum of the integers read. The
sum is displayed each time the interna statements of the loop are executed. The loop is
repeated as many times as the user types in an integer. The execution of the loop, and the
entire program, is terminated when the user enters a zero from the keyboard.

The interna statements of a while loop are executed zero times if the boolean
expression isfalse at the beginning. Rarely executing while loops are sometimes needed
in computer programs, but while loops that are never entered are programming mistakes.
It is often too easy to make a mistake such that the boolean expression of awhile loopis
never true. For example, in Whilesum.java, if we initialized variable integer from -
keyboard to zero, theinternal statements of thewhile loop would be never entered.

Another common programming mistake is to write awhile loop that never termi-
nates. If the execution of the internal statements does not affect the truth value of the bool-
ean expression, the loop is most likely a never-ending, infinite (endless) loop. In older
personal computers the only possibility to terminate an endless loop was to switch off
electricity from the computer. This ultimate loop-termination act may still be sometimes
needed, but it is better first to try to close the window where the program is executing, or
press Control-C (Ctrl and C keys simultaneously on the keyboard). We get an example of
an endless loop by writing the while loop of program While20.java in the following
way:

while (number to print <= 20)

{
}

The loop above is an endless loop, because variable number to print iS not incre-
mented inside the loop, and the boolean expression stays true forever. If the loop above is
inserted in program While20.java into the place of the existing while loop, the program
would keep printing the number zero forever.

System.out.print(" " + number to print) ;

6.3 while loops enable repetition 155

: It is possible to declare avariable and assign avalue .
to it in asingle statement. This line means the same as
int number to print ; !

5 number to print = 0 ; :
: When a variable is assigned a value at the same time !
// While20.java when it is declared, we say that the variable isan initial- |
. izedvariable. y
class While20 B i e -
{
public static void main(String[] not in use) N
{
int number to print = 0 ; & e -

System.out.print("\n Numbers from 0 to 20 are the following:\n\n ")

while (number to print <= 20)

¢ System.out.print(" " + number to print) ; & - -.
number to print ++ ; <.
} ' .
} .
} 4 I:
. ++ is called the increment operator. In this case the : ! The two statements inside
; operator increments the value of number to print by : . braces after the boolean expres
* one. Thisline means the same as .+ sionwill berepeatedly executed

I + aslong asthe boolean expres-

number to print = number to print + 1 ; N
sion istrue. Asthe value of

N - E number to print isinitialy :
ST e . ' zero, anditisincremented by ;
-' The above program could be constructed without a loop ., oneeverytime th_e T IS exe- :
' o . ; i '+ cuted, theloop will terminate '
by writing the two statements 21 times in the program: D after 21 it ;
' System.out.print(" " + number to print) ; | e g peliieE y
] number to print ++ ; LN
] System.out.print(" " + number to print) ; !
! number to print ++ ; :
! System.out.print(" " + number to print) ; :

number to print ++ ;
i ... etc. etc. !
! It is easier, though, to write the program by using aloop. i

While20.,java- 1. A program containing a simple while loop.

D:\javafiles2>java while20

Numbers from O to 20 are the following:

0123456789 1011 12 13 14 15 16 17 18 19 20

While20.java - X. The output from the program is always the same.

156 Chapter 6: Decisions and repetitions: basic activitiesin programs

These variables are assigned initial values at the same time
' they are declared. integer from keyboard must beinitial-
' ized with a non-zero value because otherwise the boolean expres-
' sion of thewhile loop would not be true at the beginning.

' sum of_integers must be zero at the beginning because no

' integers have been read from the keyboard so far.

'

// Whilesum.java (c)
import java.util.* ;

class Whilesum

System.out.print

while (integer from keyboard != 0) K- -
{ System.out.printf(" Current sum: %8d Enter an integer: ", <--,
+ sum of integers) ;
integer from keyboard = keyboard.nextInt() ;
sum of integers = sum of integers + integer from keyboard ;
} 7

Variable integer from key-

board gets anew value each

internal statements of the loop are exe-

cuted. Immediately after the i

read from the keyboard, it is added to the

sum of the integers.

.........

; This boolean expression is
Kari Laitinen : trueaslong as integer -
' from keyboard contains some-
' thing other than a zero. !=isthe

"not equal” operator of Java

{ S el
public static void main(String[] not in use) |
{ \
Scanner keyboard = new Scanner(System.in) ;
'--> int integer from keyboard = -1 ; \
int sum of integers = 0 ;

("\n This program calculates the sum of the integers"
+ "\n you type in from the keyboard. By entering a"
+ "\n zero you can terminate the program. \n\n") ; .

] Thevalue of variable sum of integers
" : is printed right-justified into a printing field
timethe ' thatis 8 character positionswide. Thisis
)] achieved by using the format specifier %84
MEGEs [' withtheprint£ () method. When theinternal
: statements of the loop are executed for the first

time, sum _of integers iSzero.

Whilesum.java - 1. A program to calculate the sum of integersin a while loop.

6.3 while loops enable repetition 157

D:\javafiles2>java whilesum

This program

calculates the sum of the integers

you type in from the keyboard. By entering a

Zero you can

Current sum:
current sum:
current sum:
current sum:
current sum:
current sum:

Whilesum.java - X.

terminate the program.

0 Enter an integer:

5 Enter an integer:

21 Enter an integer:
Enter an integer:

Enter an integer:

Enter an integer:

The program calculatesthe sum of six integers here.

while loops, and also other loops, are such that we often use a particular integer
variable to control the correct termination of the loop. The technique works by having a
variable as part of the boolean expression of the loop, and this same variable is incre-
mented or decremented inside the loop. To increment and decrement the values of vari-
ables, Java provides two operators ++ and --. Operator ++ is the increment operator which
increments the value of a variable by one. Operator -- is the decrement operator which
subtracts one from the value of the variable. Incrementing the value of avariable by oneis
the same as assigning the variable a value which is one larger than its current value. Thus
the meaning of the following two statements is the same:

some variable ++ ;
some variable = some variable + 1 ;

Also the meaning of the following two statements is the same:

some variable -- ;
some variable = some variable - 1 ;

Increment and decrement operators are useful because incrementing and decrement-
ing operations are so common inside loops, and these operators alow us to write things
down in a concise way. When you use an increment or decrement operator in a program,
you may not write any spaces between the two plus or minus signs. If you write, for exam-
ple, + +, the compiler interprets these separate plus signs as two adjacent addition opera-
tors, and most likely displays an error message.

Assignment statements and increment/decrement statements, such as the ones above,
are usually short, occupying only one line in a program. They look very different from
loops or if constructs. However, it is important to realize also that while loops, and the
other loops that will be introduced in the following sections, are statements. Various kinds
of i £ constructs are also statements. Because loops and i £ constructs are usually long and
consist of many lines of source program, they do not look very similar to the shorter state-
ments. For this reason, they are just called loops and constructs in this book, but you must
remember that loops and i £ constructs are statements. A loop can have another loop or an
if construct as an internal statement.

158

Chapter 6: Decisions and repetitions: basic activitiesin programs

6.4 for loops repeat a known number of times

Program While20.java uses a while loop to print numbers from O to 20. The internal
statements of the loop are repeated 21 times. The termination of the loop depends on the
value of variable number to print. Program For20.java is a rewritten version of pro-
gram While20.java. A for loop isused in For 20.java instead of awhile loop. Although
they are written by using different looping mechanisms, programs For20.java and
While20.java perform in exactly the same way.

for loops are convenient when we want to repeat something a certain number of
times in a program. Typicaly, for loops are controlled by a single integer variable
(number to print in For20.java) which is either incremented or decremented each
timethe internal statements of the loop have been executed. The general structure of atyp-
ical for loop isdescribed in Figure 6-6. £or loops are not that much different fromwhile
loops. The termination of both loops is controlled by a single boolean expression. When
the boolean expression is or becomes false, the execution of the program continues from
the statement that follows the loop. The essential difference between awhile loop and a
for loop isthat a for loop has three "things' inside parentheses (') after keyword for,
whereas a while loop has only one "thing", the boolean expression, inside parentheses
after keyword while. The assignment statement that is the first thing in parentheses in
Figure 6-6 will be executed before anything else takes place, and that statement is exe-
cuted only once. The third thing in parentheses, the increment or decrement statement, is
executed always after the internal statements of the loop have been executed.

Everything that can be done with a for loop in a program can also be done with a
while loop. Figure 6-7 shows how a for loop can be converted into awhile loop. The
assignment statement, that isthe first item inside parentheses of the £or loop, can be writ-
ten as a statement that precedes the while loop. The increment or decrement statement,
that is the last item inside parentheses of the for loop, can be added as the last statement
to the body of the while loop. As the increment or decrement statement is executed
equally as many times as the internal statements of a for loop, it islogical toincludeit in
the internal statements of the corresponding while loop.

Statements preceding the £or loop.

for (assignment statement ;
boolean expression ;
increment or decrement statement)

One or moreinternal statements that will be repeatedly executed
aslong as the boolean expression given aboveistrue. When the

bool ean expression becomes fal se, the statements that follow this
for loop will be executed.

}

Statements following the £or loop.

Figure 6-6. Typical structure of a for loop.

6.4 for loopsrepeat a known number of times 159

Inside the parentheses after the keyword for, for loops have three "things" \
separated with two semicolons. In thisloop .
' e theassignment statement number to print = 0 will be executed !

before the program actually startslooping,

. e theboolean expresson number to print <= 20 decideswhen theloop .

' terminates, and !

e theincrement statement number to print ++ Will be executed each
time after the internal statement of the loop has been executed.

// For20.java (c) Kari Laitinen

class For20

N
N
N
{ \

public static void main(String[] not_in use) E
{ .
int number to print ; :
System.out.print("\n Numbers from 0 to 20 are the following:\n\n ")
for (number to print = 0 ;
number to print <= 20 ; &= -
number to print ++)
{
System.out.print(" " + number to print) ; <-------s -
o<l
3} .
} P

! ; This statement is the only statement

' insidetheloop. The statement will beexe-
© cuted 21 times. When the value of '
number to_ print iS20, it will be incre-

In the same way as in the case of while

' loops, the internal statements of £or loops l " mented to 21, resulti ngin that theboolean
' arewritten inside braces. The internal state- ! ' expression '
' mentsof aloop can also be called with the I] number to print <= 20 '
+ term "body of the loop”. : + isnot true any more, and the loop termi- :
' :' nates. :

D:\javafiles2>java For20

Numbers from 0 to 20 are the following:

012345678910 11 12 13 14 15 16 17 18 19 20

For20.,java - X. The program produces the same output as program While20.java

160

Chapter 6: Decisions and repetitions: basic activitiesin programs

Statements preceding the loop.
for (assignment statement ; = —

boolean expression ;
increment or decrement statement)

{
}

Statements following the loop.

Internal statements of the loop.

Statements preceding the loop.

assignment statement ; - —

while (boolean expression)

{

Internal statements of the loop.

increment or decrement statement ;

}

Statements following the loop.

Figure 6-7. Converting a for loop into a while loop

Loopsand if constructs can be mixed in a program. A loop can contain an if con-
struct, and a loop can be written inside an i£ construct. Program Forcodes,java shows
how an i £ construct can be one of the interna statements of a £or loop. When the internal
statements of the for loop of Forcodes.java are repeated, the internal statements of the
if construct are executed when the boolean expression of the i £ construct is true.

Forcodes.java prints characters and their character codes in the range from 20H to
7FH (from 32 to 127 in decimal). The program must repeat the internal statements of the
loop 96 times to perform the entire printing operation. Because we know beforehand how
many times the loop must be repeated, a £or loop is convenient in this program. To print
the characters and character codes from 20H to 7FH, the loop control variable named
numerical code iS Set to value 0x20 at the beginning and the loop terminates when
numerical code reachesvaue 0x80. A for loop is typicaly such that its loop control
variableis given acertain initial value, and its value isincremented or decremented until it
reaches a certain terminal value. In program Forcodes.java, the loop control variable
numerical code passesthrough all values from 20H to 7FH while the loop isbeing exe-
cuted.

Hexadecimal literals 0x20 and 0x80 are used in Forcodesjava. The prefix Ox is
needed when a programmer wants to write a numerica literal in hexadecima form in
Java. When the compiler recognizes the prefix 0x, it knows that it is a hexadecimal num-
ber. Without a prefix, the compiler assumes numerical literals to be in the normal decimal
form. It is often convenient to think of character codes in hexadecimal form. However, if
you found hexadecimal literals difficult in For codes.java, you could replace 0x20 with 32
and 0x80 with 128 without making any functional changesin the program.

6.4 for loopsrepeat a known number of times 161

As program Forcodesjava must print 96 different characters and their character
codes and also insert spaces to separate the characters and codes, it is impossible to print
everything on asingle line on the computer's screen. For this reason, the program brings a
new line into use after it has printed 8 characters and codes on the current line. The pro-
gram usesthe variable number of codes on this line to count how many character
codesit has processed. The i £ construct in the body of the for loop monitors the value of
this variable. When number of codes on this line reaches the value 8, a newline
character is printed and the value of the variable is made zero again.

In the case of each numerical code Forcodes.java first prints the character and then
the numerical code in hexadecimal form. For example, when the value of variable numer -
ical code is54H, the program prints"T 54 ". The program does not use letter H to indi-
cate hexadecimal numbers. To convert a numerical code into a character, the program
copies the numerical code into avariable of type char in the statement

char character to print = (char) numerical code ;

which both declares the variable and copies a value to it. The marking (char) in the
above statement is an explicit type conversion that converts the value of numerical -
code to type char before the assignment takes place. Without the explicit type conver-
sion, the above assignment is not possible. After the above statement has been executed,
both varigbles, character to print and numerical code, contain the same numeri-
cal value. But the contents of variable character to print will be printed as a charac-
ter because it is of type char. Here you must remember that all variables in a computer's
main memory contain nothing but binary numbers, zeroes and ones. But in a program
which usesthe variablesin a computer's memory, the binary information stored in the vari-
ables can be interpreted in different ways, depending on the type of the variable. In
Forcodes.java, the numerical information stored in variable numerical code isconsid-
ered to be numerical information, but when the same information is stored in the variable
character to print, it iStreated as a character symbol.

Exercisesrelated to while loops

Exercise 6-5.

Exercise 6-6.

Which numbers would be printed to the screen if the lines

int growing number
int shrinking number

20 ;

while (growing number < shrinking number)

{
System.out.print(" " + growing number
+ " " 4+ shrinking number) ;
growing number = growing number + 2 ;
shrinking number = shrinking number - 3 ;
}

were executed on a computer? How would the output of the above while loop changeif the
internal statements of the loop were put in an opposite order, i.e., if the output statement came
after the assignment statements?

Make a copy of program While20.java, and name the new file Whileodd.java. Modify the
new program so that it prints only the odd numbersin the range from 0 to 20.

162 Chapter 6: Decisions and repetitions: basic activitiesin programs

Here avariable of type char isdeclared inside the
for loop, and the value of numerical code iscopied
into the variable. Variable character to printis
printed as a character because it is of type char. Vari-
ablenumerical code isprinted as numerical digits

becauseitis of type int.

' // Forcodes.java (c) Kari Laitinen

class Forcodes

By using the printf () method I
© andtheformat specifier x, itispos-
' sibleto print the value of an int l
© variablein hexadecimal form. The !
: current value of numerical code :
© replaces the format specifier x in I
+ thestring "sx ". In practice this !
' meansthat a space character is !
© printed after each hexadecimal code.

! {
' public static void main(String[] not_in use) .
: { ,
' int number of codes on this line = 0 ; \
. System.out.print("\n The visible characters with codes from 20" "
+ "\n to 7F (hexadecimal) are the following:\n\n "); |
for (int numerical code = 0x20 ; '
numerical code < 0x80 ; '
. numerical code ++) ;
- { /
R > char character to print = (char) numerical code ; .
System.out.print(character to print + " ") ; ’
System.out.printf("$x ", numerical code) ; <------ -
number of codes on this line ++ ;
if (number of codes on this line == 8) <---
{
et e > System.out.print("\n ") ; Y
number of codes on this line = 0 ;)
: } :
. } ‘
L)

We say that a program prints a newline, ;
when anew empty line is started on the ;
screen. A newline can be printed simply by ;
outputting character \n which means actually ;
acharacter which has character code OAH ;
(20 decimal). i

Thisif construct ensuresthat the program
printsanewline after eight characters and their
character codes have been printed. The bool-
ean expression of the i £ construct becomes
true in every 8th repetition of the loop. The
program prints altogether 96 characters and
character codeson 12 lines.

Forcodesjava- 1.+ A program that printsa character codetable.

6.4 for loopsrepeat a known number of times 163

; It is possible to declare and initidlize avariable inside Theinternal statementsof the
the parentheses of a £or loop. Becausetheinitial valueof '+ loop will be repeatedly executed as
' thevariable numerical_code is20H (32 decimal), a ' long asthe value of numerical -
© spaceisthefirst character to be printed. 20H is the charac- code isless than 80H (128 deci- .
ter code of the space character. By adding the prefix Ox . mal). '
* before the actual number, you can define a hexadecimal :
+ literal constant in Java. 0x20 means the same as 32.

: : Variable numerical -
i code isincremented by one

© ' every timeafter theinternal |

for (int numerical code 0x20 ; K ‘ o statements of the Ioop have :

numerical code 0x80 ; < --") been executed once.
numerical code ++) < - ‘

Al

char character to print = (char) numerical code ;

System.out.print(character to print + " ") ;
System.out.printf("%x ", numerical code) ;

number of codes on this line ++ ;

if (number of codes on this line == 8)

{
System.out.print("\n ") ;
number of codes on this line = 0 ;

}

Forcodesjava- 1-1. Thefor loop which printsthe charactersand character codes.

D:\javafiles2>java Forcodes

The visible characters with codes from 20
to 7F (hexadecimal) are the following:

20 1 21 " 22
28 29 * 2a 2b 2¢C
30 31 2 32 33 34
38 39 : 3a; 3b 3c
40 41 42 43 44
48 49 4a 4b 4c
50 51 R 52 53 54
58 59 5a 5b 5c
" 60 a 61 b 62 63 64
68 69 6a 6b 6¢C
70 71 72 73 74
78 79 7a 7¢

23 $ 24

©
R

25 & 26 ' 27
2d . 2e / 2f
35 6 36 7 37
3d > 3e ? 3f
45 46 47
4d 4e 4f
55 56 57
5d S5e 5f
65 66 67
6d 6e 6f
75 76 77
7d 7e 7f

w + H*

KO 4w <0HD»WOR\w
N SWONRDmUD
AN NP0 AN

+t =9 -4~ OA b~
“wc DM cCc=2mI v
! <3 Hh><ZTmMV e

~
o

Forcodesjava - X. The 96 charactersand character codes printed by the program.

164

Chapter 6: Decisions and repetitions: basic activitiesin programs

6.5 do-while loops execute at least once

Both while loops and for loops have a boolean expression which decides whether the
internal statements of the loop are executed or not. The boolean expression is checked
first, and the internal statements are executed afterwards if the boolean expression was
true. The statements inside while and for loops are not executed at all if the boolean
expression isfalse at the beginning. Sometimes it is necessary that aloop is executed zero
times, but in some other cases we need |oops to execute their body, theinternal statements,
a least once. For such situations, Java provides a third possibility to construct a loop.
These loops are called do-while loops.

Figure 6-8 shows the basic structure of a do-while loop. The essential difference
between while loopsand do-while loOps, isthat in while loopsthe value of the boolean
expression is evaluated at the beginning, whereas in do-while loops the boolean expres-
sion is evauated after the internal statements have been executed. For this reason, the
internal statements of ado-while loOp are executed at least once.

Program M eanvaluejava calculates the mean value of the integers read from the
keyboard. It uses a do-while loop to read the integers and simultaneoudly calculate the
sum of the integers read. The boolean expression of the do-while l0Op causesit to termi-
nate when the user types in a zero from the keyboard. After the do-while loop the pro-
gram cd cul ates the mean value as it knows the sum of the integers and how many integers
were entered from the keyboard. Note that an i £ construct is used in the program M ean-
valuejava to ensure that there were non-zero number of integers entered from the key-
board. No mean va ue can be calculated if no integers other than the zero were entered.

In program M eanvalue.java the following statement cal cul ates the mean value:

mean value = (float) sum of integers /
(float) number of integers given ;

The term (float) in the assignment statement above means that the int variables
sum of integers and number of integers given are converted to type float
before division. This kind of conversion is called explicit type conversion. In the above
case, type conversion is necessary to get accurate division results. You can make these
kinds of type conversions for any variable type by writing the destination type in parenthe-
ses before the variable name. Explicit type conversion has alocal effect to the type of a
variable. The converted valueis used only in that place of a program where (some type) is
written. For example in the statement above, the value of int variable sum of -
integers iStreated as a float vaue, but the variable still remains as an int variable,
and it would be treated as such if it were used later in the program.

One or more statements that will be first executed once, and then
repeatedly executed as long as the bool ean expression, given
below in parentheses, istrue.

}

while (boolean expression) ;

Figure 6-8. The structure of do-while loops.

This do-while loop reads the integers and calculates their
sum. do isareserved keyword of Java. Theinterna statements
of ado-while loop, which are always executed at least once,
are given inside braces immediately after the keyword do. ;

) // Meanvalue.java (c) Kari Laitinen
! import java.util.* ;

class Meanvalue

6.5 do-whileloops execute at least once 165

; -listheinitial valueof the |
' vaiablethat countshow many |
' integers have been entered l
+ from the keyboard. This way !
' thelast integer, a zero, is not l
' calculated in the sum of the l
' integers. I

{
public static void main(String[] not in use) ‘
{ K
Scanner keyboard = new Scanner(System.in) ; K
int integer from keyboard = 0 ; L
int number of integers given = -1 ; < °°
float mean value = 0 ;
int sum of integers = 0 ;
System.out.print("\n This program calculates the mean value of"
+ "\n the integers you enter from the keyboard."
R + "\n Please, start entering numbers. The program"
R + "\n stops when you enter a zero. \n\n") ;
T do
{
System.out.print(" Enter an integer: ") ;
integer from keyboard = keyboard.nextInt();
number of integers given ++ ;
sum of integers = sum of integers + integer from keyboard ;
while (integer from keyboard != 0) ; € - .
-7 if (number of integers_given > 0) B
mean value = (float) sum of integers / :
(float) number of integers given ; /
' System.out.print("\n The mean value is: " + mean value + " \n"))
v } N

This program calculates the mean value
only if some numbers were actually entered
from the keyboard. Without this i £ con-
struct, the program could carry out adivision
by zero which might result in serious prob-
lems when the program is executed.

There must be a semicolon to terminate a
do-while loop. The boolean expression is
aways evaluated after the internal statements
of the loop have been executed once. Here, the
boolean expression is constructed by using

operator !=, "not equal”.

Meanvaluejava- 1. A program to calculate the mean value of a set of integers.

166 Chapter 6: Decisions and repetitions: basic activitiesin programs

D:\javafiles2>java Meanvalue

This program calculates the mean value of
the integers you enter from the keyboard.
Please, start entering numbers. The program
stops when you enter a zero.

Enter an integer: 222

Enter an integer: 333
Enter an integer: 444
Enter an integer: 555
Enter an integer: 0

The mean value is: 388.5

Meanvaluejava - X. The program calculates here the mean value of four integers.

Exerciseswith loops

Exercise 6-7. Make a copy of program Whilesum.java, and modify the new file so that the program calcu-
lates how many integers the user has entered from the keyboard. The program must stop read-
ing in new integers when the user has entered 10 integers.

Exercise 6-8. Make a copy of program M eanvalue.java, and modify the new file so that the program prints
the current mean value each time anew integer has been entered from the keyboard.

Exercise 6-9. Write a program that prints a conversion table from miles to kilometers or from kilometersto
miles. The program must first ask what kind of conversion table the user wants. After having
asked this, you need an if construct in the program. The program must use either a for or a
while loop to print the conversion table. The program must print at least 15 conversion lines,
for example, in the following way:

miles kilometers
10 16.09
20 32.19
30 48.28
140 225.30
150 241.40
Exercise 6-10. In Chapter 5 there is an exercise which explains how to convert degrees Celsius to degrees

Fahrenheit. Write a program that prints a Celsius to Fahrenheit conversion table. Use a for
loop in your program.

Exercise 6-11. Write a program that can display the character code of any character that is entered from the
keyboard. The program should read charactersin aloop and print their character codes. The
character code must be printed both in hexadecimal and decimal form. You can use program
Forcodes,java as an example, but it is better to useawhile loop in thiskind of aprogram. The
program should stop asking new characters when the user enters a specia character like % or
&.

