
CHAPTER 8

 STRINGS STORE SEQUENCES OF CHARACTER CODES

Computers perform many kinds of text processing tasks. Therefore, programming lan-
guages must have mechanisms to handle textual information. In Java, the basic mechanism
for storing and handling text is an object of type String. Texts consist of sequences of
characters, and a String object can contain a sequence of character codes.

String objects are like variables, but they are different from the variables that we have
studied so far. String objects are actually instances of a class named String, and they
can be manipulated with special string methods. In this chapter, we shall study the nature
of String objects and string methods. Because methods and classes will be the subjects
of the following chapters, it is possible that the last part of this chapter (string methods
etc.) will be too difficult for you. So my suggestion is that, please, study the first three sec-
tions of this chapter, and, if the rest of the sections turn out to be too difficult, return to
those sections after chapters 9 and 10. These "difficult" sections were included in this
chapter because I wanted to have all string-related stuff presented in a single chapter.

© Copyright 2006-2013 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
als who want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in
a retrieval system or lend these pages in public or private libraries.
For more information about Kari Laitinen’s books, please visit
http://www.naturalprogramming.com/

200 Chapter 8: Strings store sequences of character codes

8.1 "Variables" of type String

So far, we have studied programs that handle mostly numerical information. In addition to
numerical information, programs often handle textual information. Textual information
consists of sequences of letters, punctuation characters, and other special characters. Com-
puters process textual information in the form of character codes (see the table on page
594). Every character that can be input from the keyboard has a unique character code.
Uppercase and lowercase letters have different codes. Although character codes are noth-
ing but binary numbers when they are stored in a computer's memory, programming lan-
guages have special features that enable them to handle character information in a
different way from that of pure numerical information.

In Java, textual information is stored in strings which resemble both variables and
arrays. A string can store a sequence of character codes that represent a text. Strings can be
declared in the following way

String name_from_keyboard ;
String file_name ;

These declarations clearly resemble variable declarations. String is the name of a stan-
dard Java class. It is not a reserved keyword like the keywords int, long, double, etc.
By studying program Fullname.java, you can find out that, like variables, strings can be
assigned values and strings can be printed to the screen.

Although strings in some ways resemble variables, they are, however, in some ways
different from the traditional variables. A string declaration like

String first_name ;

specifies a reference, a name that can reference or refer to a String object. A String
object can be created, for example, by invoking (calling) the method nextLine() for the
keyboard object. For example, the statement

first_name = keyboard.nextLine() ;

creates a String object of those characters that are read by method nextLine(), and
makes the name first_name reference the created object. A string name like
first_name references a String object so that the address of the object is stored in the
memory that is reserved in the declaration of the string. Figure 8-1 clarifies how string
declarations and string object creations consume memory.

When a variable stores a numerical value, it stores the value as it is. A variable does
not refer to a value stored elsewhere in the main memory. A string is different. A string
references a String value (object) that is located in a different part of the main memory,
the heap memory. For this reason, string can be said to be a reference type. Basic variable
types such as int, long, double, etc., can be called value types to distinguish them from
String and other reference types.

8.1 "Variables" of type String 201

// Fullname.java (c) Kari Laitinen

import java.util.* ;

class Fullname
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 String first_name ;
 String last_name ;

 System.out.print("\n Please, type in your first name: ") ;
 first_name = keyboard.nextLine() ;
 System.out.print("\n Please, type in your last name: ") ;
 last_name = keyboard.nextLine() ;

 System.out.print("\n Your full name is "
 + first_name + " " + last_name + ".\n") ;
 }
}

Here, two "variables" of type String
are declared. These "variables" are not like
the traditional variables although these
declarations resemble the declarations of
the variables of the basic types int, long,
short, double, etc.

Here we read values for the string "variables"
from the keyboard by calling method nextLine()
for the keyboard object. nextLine() reads a line
of characters and constructs a String object of
those characters. The String objects that are
returned by the nextLine() method are assigned
as values for the string "variables".

Strings can be joined with the
string concatenation operator +. The
String values (objects) which the
names first_name and last_name
reference are printed among the string
literals that are given between double
quotes.

Fullname.java - 1. The input/output of strings.

Fullname.java - X. A space is inserted between the first name and the last name in the output.

D:\javafiles2>java Fullname

 Please, type in your first name: Kari

 Please, type in your last name: Laitinen

 Your full name is Kari Laitinen.

202 Chapter 8: Strings store sequences of character codes

Figure 8-1. The text "Kari" stored in a String object.

STACK MEMORY
The memory area in the
main memory for small data
items.

We suppose here that the memory area
that has been reserved from the heap
memory starts in address C934A8H.
This address is stored in reverse byte
order to the four bytes in the stack mem-
ory. (Normally programmers do not
need to care about the numerical mem-
ory addresses. It is, however, important
to understand how a string reference
points to a String object in the heap
memory.)

H
E
A
P

M
E
M
O
R
Y

Here we again imagine that the main
memory of the computer as a long list of
one-byte memory cells. The declaration
 String first_name ;

reserves four bytes of memory. These
four bytes can store an address of a
String object. We say that
first_name is able to point to, or to
reference, a String object.

When first_name is assigned a value with
the statement
 first_name = keyboard.nextLine() ;

the nextLine() method reads characters
from the keyboard until the Enter key is
pressed. The method creates a String object
of the read characters. The String object is
placed in the heap memory, and the address of
the object is stored in the assignment opera-
tion. Here we assume that the text "Kari" was
entered from the keyboard. Each 2-byte char-
acter code of the text is stored so that the less
significant byte is stored before the more sig-
nificant byte. (In reality, a String object may
contain also other data than just the codes of
the characters, but that data is not shown in
this drawing.)

 00C934A8H: character code ’K’

 character code ’a’

 4BH

 00H

 61H

 00H

 72H

 00H

 69H

 00H

 character code ’r’

 character code ’i’

 A8H

 34H

 C9H

 00H

8.2 String literals 203

8.2 String literals

Although it has not been explicitly mentioned, we have actually been using string informa-
tion throughout this book. In most output statements there are constant texts inside double
quotes. These constant texts are called string literals. They may also be called string con-
stants. For example, the following statement outputs a string literal to the screen.

System.out.print("I am a string literal.") ;

String literals can be used to create String objects by assigning a string literal as a
value to a declared string. For example, when a string like

String some_string ;

is declared, it can be assigned a value with a statement like

some_string = "I am a text inside a String object." ;

The above statement creates a String object of the characters that are given between the
double quotes, and makes some_string reference (point to) the created String object.
If necessary, the two statements above can be combined into the following single state-
ment that both declares the string and assigns a value to it

String some_string = "I am a text inside a String object.";

A string literal is a data item of type String, and stored somewhere in the com-
puter's main memory. String literals cannot be modified. They belong to the same category
as integer, floating-point, or character literals. Integer literals are plain numbers (e.g. 4 or
1909). Floating-point literals are numbers with a decimal point (e.g. 25.106). Character lit-
erals are characters inside single quotes (e.g. 'A', 'n', or '+'). It is important to understand
the difference between single-quoted character literals and double-quoted string literals.
For example,

'A' is a literal of type char and it means the character code of letter A (i.e. the
numerical value 65 or 41H), but

"A" means a string inside which the character code of letter A is stored.

The rule for writing string literals is that you include the characters of the string lit-
eral inside double quotes. A problem arises when you want to include the double quote
character itself in a string literal. In Java, this problem has been solved so that, if you want
to include a double quote character in a string literal, you simply have to add one back-
slash character \ before the double quote. A backslash preceding a double quote means that
the double quote character is not the terminator of that string literal. A backslash in a string
literal generally means that the character following the backslash will be interpreted in a
special way. For example, the output statement

System.out.print("\"C:\\TEMP\" is a directory. ") ;

would produce the text

"C:\TEMP" is a directory.

on the screen. You can note that \" means a double quote and \\ means a backslash in the
above string literal. Previously we have learned that \n means a newline in texts to be
printed. Other characters that need to be printed with the help of a backslash are backspace
\b, carriage return \r, the tabulator character \t, and single quote \'. In addition to string lit-
erals, the backslash sequences are applied in character literals. For example, '\n' means the
character code for a newline and '\'' is the character code for a single quote. The characters
that are written with a backslash are called escape sequence characters. The backslash
character \ is an escape character with which we can escape from the general rules for writ-
ing string literals and character literals.

204 Chapter 8: Strings store sequences of character codes

8.3 Accessing individual characters of a string

An object of type String contains zero or more character codes that represent a text. The
character codes can be codes of letters (A, B, C, D, ..., a, b, c, d,...), codes of numerical
digits (0, 1, 2, 3, ...), codes of special and punctuation characters (*, [, }, -, +, ., \, /, ...), or
codes of "invisible" characters such as newlines (\n) or tabulators (\t). The character codes
stored in a String object are arranged in such an order that the position of each character
(e.g. the first character and the last character) can be identified. Actually, there is an array
of character codes inside every String object. The individual characters stored in the
array can be accessed with a special method named charAt().

Programs Widename.java and StringReverse.java are examples that demonstrate
how individual characters of String objects can be read and printed to the screen. By
studying these programs you can see that a string can be processed in a loop in the same
way as an array. A single character of a string can be read by using (calling) the charAt()
method. An index expression is written between the parentheses when charAt() is
called. Valid index values start counting from zero, and the last valid index value is one
less than the length of the string.

For String objects there exists a method named length() that tells what is the
length of the string in question, i.e., how many characters are stored in the string. The
length() method can be called (invoked) for a String object by using the dot operator .
in the following way

string_name.length()

Also the "invisible" characters like newlines and tabulators are counted as characters
when the length of a string is determined. For example, the statements

String short_text_lines = "\n aaa \n bbb \n ccc " ;

System.out.print(short_text_lines.length()) ;

would print 18 to the screen because the string short_text_lines is made of 3 new-
lines, 6 space characters, and 9 letter characters. The newline character \n is a single char-
acter although we have to write it with two separate character symbols in our programs.

An empty string is a string that has been created, but that does not contain any char-
acters. The length of an empty string is zero. You cannot access any characters of an
empty string because all index values are illegal. The following is an example of the cre-
ation of an empty string

String some_empty_string = "" ;

In general, the following facts apply to every string provided that the string is not
empty:

• string_name.charAt(0) refers to the first character of the string.

• string_name.charAt(string_name.length() - 1) refers to the last
character of the string.

• string_name.charAt(any valid index expression) refers to a data item of type
char.

A String object is an immutable entity once it has been created. This means that it
is possible to read the characters of a String object, but it is not possible to modify them.
Later on in this chapter we shall study StringBuilder objects which are mutable
strings.

8.3 Accessing individual characters of a string 205

// Widename.java (c) Kari Laitinen

import java.util.* ;

class Widename
{
 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 String name_from_keyboard ;
 int character_index = 0 ;

 System.out.print("\n Please, type in your name: ") ;
 name_from_keyboard = keyboard.nextLine() ;

 System.out.print("\n Here is your name in a wider form: \n\n ") ;

 while (character_index < name_from_keyboard.length())
 {
 System.out.print(
 " " + name_from_keyboard.charAt(character_index)) ;
 character_index ++ ;
 }
 }
}

In this while loop, the string
name_from_keyboard is pro-
cessed from the beginning to the
end. The while loop stops when
character_index reaches a value
that is the length of the string.
Method length() is used here to
find out how many characters the
String object contains.

Method nextLine() reads a string from the key-
board. The program waits here until the user types in
something and presses the Enter key. The newline charac-
ter \n that represents the Enter key is not included in the
read character string. After this statement has been exe-
cuted, the input from the keyboard is stored in the
String object referenced by name_from_keyboard.

To achieve widely spaced printing, this output statement
prints one space character before each character from
name_from_keyboard. Method charAt() returns a sin-
gle character from the string. The value of character_in-
dex determines which character is currently being printed.

Widename.java - 1. Referring to individual characters of a string.

Widename.java - X. Here "wide" printing means spaces between characters.

D:\javafiles2>java Widename

 Please, type in your name: Charles Babbage

 Here is your name in a wider form:

 C h a r l e s B a b b a g e

Charles Babbage was a man
who built mechanical comput-
ing machines more than 150
years a ago.

206 Chapter 8: Strings store sequences of character codes

Exercises related to strings
Exercise 8-1. Program Widename.java shows how a string can be printed in wide form, with a space

between the characters of the string. Program StringReverse.java shows how the characters of
a string can be printed in reverse order. Your task is to now write a program that does both these
activities. The program should ask for a string from the keyboard, and print the characters of
the string both in wide form and in reverse order. If string "Hello!" were entered from the key-
board, your program should print

! o l l e H

Exercise 8-2. Write a program that asks for a string from the keyboard, and explores each character in the
given string and counts how many uppercase letters, lowercase letters, numbers, and other
characters there are in the given string. By writing keyboard.nextLine() you can read the
string from the keyboard. You can use normal integer variables to count different types of char-
acters. When you use the charAt() method, you need an index variable (e.g. character_in-
dex). Studying program Iffing.java in Chapter 6 may help you in this exercise.

Exercise 8-3. Write a program that reads a string from the keyboard, and prints the character codes of the
string in hexadecimal form. If string "Hello!" were entered from the keyboard, the program
should print

48 65 6C 6C 6F 21

where 48 is the hexadecimal code for the uppercase letter H, 65 the hexadecimal code for the
lowercase letter e, etc. When the charAt() method is called, it returns a value of type char.
One possibility to print a value of type char in hexadecimal form is to first convert the char
value to an int value, and then print the int value in hexadecimal form with the printf()
method. For example, if some_character is a variable of type char, it can be printed in hexa-
decimal form with the statement

System.out.printf(" %X", (int) some_character) ;

Exercise 8-4. Write a program that inputs a string from the keyboard, and prints the string in uppercase form.
For example, if the string "Steven Jobs" were typed in from the keyboard, your program should
print

STEVEN JOBS

Your program must find all lowercase letters in the given string and convert them to uppercase.
A lowercase letter can be converted to uppercase by subtracting 20H from the lowercase char-
acter code. The following expression is true when character_in_string contains a lower-
case letter

 (character_in_string >= 'a' &&
 character_in_string <= 'z')

Another possibility to create this program is to use the string method toUpperCase().

Exercise 8-5. Write a program that reads a string from the keyboard and checks whether the given string is a
palindrome, a string that is the same were it read from left to right or from right to left. The fol-
lowing strings are examples of palindromes

aabbbccbbbaa
xx12zzz21xx
saippuakauppias

One possibility to make this program is to read the characters of the string with two indexes,
one index incrementing from zero and the other index decrementing from the last character.
The program should check whether corresponding letters at each end of the string are the same.
Another possibility is to make a reversed copy from the original string, and use either the string
method compareTo() or the string method equals() to check whether the strings are equal.
Class StringBuilder, which will be studied later in this chapter, provides a reverse()
method to reverse strings.

