
CHAPTER 9

 METHODS – LOGICAL PERFORMING UNITS IN PROGRAMS

The word "method" has already been mentioned many times in this book. A method is a
piece of program code that performs a well-defined task. In every program we have had a
method named main(). Method main() is always executed first when the execution of a
program begins. We have also encountered methods print(), printf(), and next-
Line() which are standard methods to write data to the screen and read data from the
keyboard. In Chapter 8 we studied many string methods (indexOf(), substring(),
compareTo(), etc.) which are standard methods to manipulate strings. Now we are going
to take a closer look at methods and their use. You will learn how to write your own meth-
ods. The term "calling" will be an important concept associated with methods.

With Java we can write static methods and non-static instance methods. The methods that
we are going to study in this chapter are static methods. The instance methods, which are
in some ways different from the static methods, will be studied in the following chapter.

© Copyright 2006-2013 Kari Laitinen
All rights reserved.
These are sample pages from Kari Laitinen’s book A Natural Introduction to
Computer Programming with Java. These pages may be used only by individu-
als who want to learn computer programming. These pages are for personal use
only. These pages may not be used for any commercial purposes. Neither elec-
tronic nor paper copies of these pages may be sold. These pages may not be pub-
lished as part of a larger publication. Neither it is allowed to store these pages in
a retrieval system or lend these pages in public or private libraries.
For more information about Kari Laitinen’s books, please visit
http://www.naturalprogramming.com/

240 Chapter 9: Methods – Logical performing units in programs

9.1 Simple static methods and the concept of calling

All programs that we have studied so far are of the form

// SomeName.java

class SomeName
{
 public static void main(String[] not_in_use)
 {
 Statements that declare data (variables, objects, and arrays).

 Functional action statements.
 }
}

The source program statements that we have seen so far have been statements of the
method named main(). Method main() has always the reserved words public,
static, and void preceding its name, and String[] not_in_use is written inside
parentheses after the method name main. The Java statements that dictate what method
main() does are inside a pair of braces { }.

From now on, we will start studying programs that may contain several methods.
The simplest form of a method is such that the type of the method is void, and the paren-
theses after the method name are empty.

Program Messages.java is an example where a simple method is called inside the
method main(). Although the structure of Messages.java is such that the source code of
the method print_message() is written first and method main() is at the end of pro-
gram, the program execution starts from method main(). Method main() is the "main
program" in the file. When a Java program is executed on a computer, the operating sys-
tem first activates the Java interpreter, the Java virtual machine, and then the virtual
machine starts the program by executing the method that is named main().

Method print_message() in program Messages.java can be considered a subrou-
tine because its execution is completely controlled by method main(). The source code of
the subroutine starts

and it is called inside method main() simply by writing the method name in the following
way

print_message() ;

What happens in a method call is that the calling method stops running, and the state-
ments of the method that was called are executed. When all statements of the method that
was called are executed, the program execution continues in the calling method from the
statement that follows the method call.

In Messages.java, method print_message() is called twice. By studying the out-
put you can find out that print_message() always prints the same text lines, while
method main() prints something else in between the message from print_message().
Program Messages.java could, of course, be written without method print_message().
If the statements inside method print_message() were copied to those two places
where print_message() is called in method main(), the program would behave in the
same way as it is doing now, but it would not need any method calls.

static void print_message()
{
 ...

Note that there is no
semicolon (;) here.

9.1 Simple static methods and the concept of calling 241

// Messages.java (c) Kari Laitinen

class Messages
{
 static void print_message()
 {
 System.out.print("\n This is method named \"print_message()\".") ;
 System.out.print("\n Methods usually contain many statements. ") ;
 System.out.print("\n Let us now return to the calling method.") ;
 }

 public static void main(String[] not_in_use)
 {
 System.out.print("\n THE FIRST STATEMENT IN METHOD \"main()\".") ;

 print_message() ;

 System.out.print("\n THIS IS BETWEEN TWO METHOD CALLS.") ;

 print_message() ;

 System.out.print("\n END OF METHOD \"main()\".\n") ;
 }
}

The statements that form the body of method print_message() are inside these braces.
The structure of this method is similar to the structure of method main(). Generally, the name
of a method can be invented by the programmer, but method main() must have that name.

Method print_message() is called twice inside method main(). A simple
static method belonging to the same class as the calling method can be called by
writing its name, a pair of empty parentheses, and a semicolon. Method calls are
statements in Java. What happens in a method call is that the statements inside the
called method are executed, and program execution continues from the statement
that follows the method call in the calling method.

Messages.java - 1. Method main() calling a simple method named print_message().

All methods must be written inside
some class declaration. In this program,
class Messages contains two separate
methods.

D:\javafiles2>java Messages

 THE FIRST STATEMENT IN METHOD "main()".
 This is method named "print_message()".
 Methods usually contain many statements.

 Let us now return to the calling method.
 THIS IS BETWEEN TWO METHOD CALLS.
 This is method named "print_message()".
 Methods usually contain many statements.
 Let us now return to the calling method.
 END OF METHOD "main()".

Messages.java - X. Method print_message() prints always the same message.

Those lines containing
mostly lowercase letters
are printed by method
print_message().

242 Chapter 9: Methods – Logical performing units in programs

In programming terminology, the method that calls another method is the caller, and
the method that is called is the callee. In Messages.java, method main() is the caller and
method print_message() is the callee. A caller calls a callee like an employer employs
an employee. A callee is always subordinate to its caller. The caller decides when a callee
is executed. The caller continues by executing the statements that follow the method call
when the statements of a callee have been executed.

Methods are executed, statement by statement, from the first statement to the last
statement. Although computers can execute statements extremely fast, only one statement
is being executed at a time. To better understand what is happening when a program is
being executed, we can think that there exists such a thing as "program control". The pro-
gram control is at that statement which is currently being executed. When the current
statement has been completely executed, the program control is passed to the following
statement. The program control is at the first executable statement of method main()
when the execution of a program begins. When the last statement of method main() is
executed, the program control is passed back to the operating system of the computer.

A method call is a statement that passes the program control to the called method, the
callee. Just after the execution of a method call, the program control is at the first execut-
able statement in callee. The program control goes through every statement in callee.
After the last statement in the callee has been executed, the program control is passed to
the statement that follows the method call in caller.

In large computer programs there are methods that call other methods that call other
methods that call other methods ... In well-designed programs there is, of course, always a
last method that is called but which does not call any other methods. In large programs,
methods are useful because they allow programs to be divided into manageable pieces of
source code. Program Letters.java is an example where a called method calls two other
methods. Method print_letters() is a callee in relation to method main(), but it is a
caller in relation to the two other methods.

Although Letters.java does not do anything that could be considered as creative
computing (i.e. the program is a simple textbook program), the program is an example of
how a programming task can be divided into smaller programming tasks with the help of
methods. What program Letters.java does is that it prints all letters of the English alpha-
bet. First it prints all uppercase letters and then it prints all lowercase letters. We can imag-
ine that Letters.java is the result of a software development project. A boss in a software
company could have started a software project to produce a program that first prints all
uppercase letters and then all lowercase letters. The software developers working on the
project could have divided the programming work into the subtasks

• print uppercase letters

• print lowercase letters

which would have been implemented (i.e. programmed) as two separate methods by dif-
ferent people.

A method is a piece of source program that performs a certain activity. When a caller
calls a method, the call is like a command to perform the activity that is programmed
inside the method. Because method calls are like commands, it is usual that method names
are in a commanding, imperative form. For example, the method names

print_uppercase_letters
print_message

are in the form of a command, since an imperative verb is the first word in the name. Tech-
nically, programmers are free to name methods according to the general naming rules of
Java, but it is useful to name methods so that they are commands. This way method names
can be easily distinguished from variable names. Inventing accurate and descriptive names
for the methods you write helps you to understand your programming task better.

9.1 Simple static methods and the concept of calling 243

// Letters.java (c) 2005 Kari Laitinen

class Letters
{
 static void print_uppercase_letters()
 {
 System.out.print("\n Uppercase English letters are: \n\n") ;

 for (char letter_to_print = 'A' ;
 letter_to_print <= 'Z' ;
 letter_to_print ++)
 {
 System.out.print(" " + letter_to_print) ;
 }
 }

 static void print_lowercase_letters()
 {
 System.out.print("\n\n Lowercase English letters are: \n\n") ;

 for (char letter_to_print = 'a' ;
 letter_to_print <= 'z' ;
 letter_to_print ++)
 {
 System.out.print(" " + letter_to_print) ;
 }
 }

 static void print_letters()
 {
 print_uppercase_letters() ;
 print_lowercase_letters() ;
 }

 public static void main(String[] not_in_use)
 {
 print_letters() ;
 }
}

These two methods are called by
the method print_letters().

Method main() has only one statement which is a method
call. These methods are in such an order that a callee is always
written before the caller. In this book programs are generally writ-
ten so that the method that will be called later in the program is
placed before the calling method in the source program file.

The method called by
main() contains two
other method calls.

Letters.java - 1. Method main() calling a method that calls two other methods.

Letters.java - X. All text is printed here by the two topmost methods.

D:\javafiles2>java Letters

 Uppercase English letters are:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 Lowercase English letters are:

 a b c d e f g h i j k l m n o p q r s t u v w x y z

244 Chapter 9: Methods – Logical performing units in programs

9.2 Methods that take parameters

The methods that we have studied so far are called in the following way

method_name() ;

You may have wondered why there always has to be a pair of empty parentheses () at the
end of a method’s name. In your mind you may have asked: "Can a pair of empty paren-
theses bear any meaning?" The answer is that they can. A pair of empty parentheses
means that the method in question does not take any parameters. This, then, raises yet
another question: what are parameters?

Parameters, which are sometimes called arguments, are data that are transferred
between a method and its caller. A method usually performs a specific activity, and it may
need some data while performing the activity that is programmed inside it. With the help
of parameters, a calling method can provide the necessary data for a called method.

Program Sums.java contains a method named print_sum(), and that method takes
parameters. We say that it takes two parameters of type int because two variables of type
int are declared inside the parentheses that have so far been empty. Method print_-
sum() is called in Sums.java in the following ways

print_sum(555, 222) ;
print_sum(first_integer, second_integer) ;

In the first method call, print_sum() calculates and prints the sum of the two integer lit-
erals 555 and 222. In the second method call, print_sum() calculates and prints the sum
of the integers stored in the variables first_integer and second_integer.

When method print_sum() is called, data is transferred from the caller to the
callee. When the call statement is executed, the data that is supplied as parameters is cop-
ied to the parameter variables declared inside method print_sum(), and after that the
internal statements of the called method are executed.

To explore the calling mechanism of methods, let’s compare the calling of methods
that take parameters and the calling of methods that take no parameters. When a method
without parameters is called, for example, in the following way

print_message() ;

the method call means "Go and execute the internal statements of method print_-
message()". When a method that takes parameters is called, for example, as follows

print_sum(1122, 3344) ;

the call means "First copy value 1122 to the first parameter variable of print_sum(),
then copy 3344 to the second parameter variable, and then go and execute the internal
statements of print_sum()". There is much meaning embedded in the latter method call.
When the method call is compiled, the compiler generates the necessary bytecode instruc-
tions to copy the parameter data to the parameter variables.

The source code of method print_sum() begins with the lines

static void print_sum(int first_integer_from_caller,
 int second_integer_from_caller)
{
 ...

The first two lines before the opening brace { are said to be the declarator of the method.
The declarator specifies the most necessary information for the caller:

• the return type of the method (The return type is void in the above declarator, but
later we will see methods which have more interesting return types.),

• the method name, and

• the names of the parameters and their types.

9.2 Methods that take parameters 245

For the caller of a method, the information given in the method declarator is suffi-
cient to use the method. The caller must know how a method works, but a method can be
called without knowing the internal implementation of the method precisely. The imple-
mentation of a method means its internal program structure: what kinds of loops are used,
which variables are declared, etc. We have already used methods without knowing how
they are written internally. In Chapter 8 we used the string methods compareTo(), sub-
string(), etc. We called these methods without seeing their actual source code.

A method may be called only with those parameter types that are specified in the
declarator of the method. The declarator of print_sum() says that it accepts two and
only two parameters of type int. Therefore, the method calls

print_sum("Hello", "world") ;
print_sum(33, 44, 55) ;
print_sum(6666) ;

are illegal and result in compilation error. The first call above is not accepted by the Java
compiler because the two parameters are not of type int. The last two method calls are
not acceptable because, although the parameters are integer literals, the number of param-
eters is not equal to two.

Program Decorations.java is another example where methods take parameters. In
that program, method main() calls a method that takes a string reference as a parameter.
The first method call is

 print_text_in_decorated_box(first_text) ;

which means roughly the following: "Here is the string reference first_text. Make the
local string reference text_from_caller reference the String object that is referenced
by first_text. Then execute the internal statements of method print_text_in_-
decorated_box()". Figure 9-1 describes the situation when the above method call has
been executed. As you can see by studying the output of Decorations.java, the text that is
referenced by first_text is printed inside a kind of decorated box. Method print_-
text_in_decorated_box() can read the characters of the String object referenced by
first_text, but no copy of the String object is made. When variables are method
parameters, they are copied to the parameter variables of the called method, the callee.
Also when String objects are used as parameters, references to the objects are passed to
the callee, but no copies of the objects are made. Also arrays and other types of objects,
which we’ll study later, are passed to the callee in the same way as String objects.

When a called method receives a copy of a parameter, we say that the parameter is
passed by value. In Java, parameters are always passed by value. When method parame-
ters are objects, the passed values are references to the objects. In some other program-
ming languages (e.g. C++ and C#) parameters can be passed by reference, which means
that the parameters of a method can be declared so that when the method is called it can
refer to data items declared in the calling method. The developers of Java wanted to create
a simple programming language, and, hence, there is only one way to pass parameters to a
called method.

246 Chapter 9: Methods – Logical performing units in programs

In the method declaration, the parameters that the method
takes are declared inside parentheses after the method name.
Parameter declarations are separated by commas. Parameters are
declared in the same way as variables, except that there are no
semicolons (;) to terminate the declarations of parameter data.

When method print_sum() is
called here, value 555 is copied to vari-
able first_integer_from_caller,
and value 222 is copied to second_-
integer_from_caller before the
statements inside print_sum() are
executed. This method call thus prints
the sum of 555 and 222.

Sums.java - 1.+ Method main() calls a method that takes two parameters of type int.

In this method call, before the internal statements
of method print_sum() are executed, the contents
of variable first_integer are copied to variable
first_integer_from_caller, and the contents of
variable second_integer are copied to second_-
integer_from_caller. The data stored in vari-
ables inside the method main() is thus copied to
parameter variables declared inside method print_-
sum().

// Sums.java

import java.util.* ;

class Sums
{
 static void print_sum(int first_integer_from_caller,
 int second_integer_from_caller)
 {
 int calculated_sum ;

 calculated_sum = first_integer_from_caller +
 second_integer_from_caller ;

 System.out.print("\n The sum of " + first_integer_from_caller
 + " and " + second_integer_from_caller
 + " is " + calculated_sum + ".\n") ;
 }

 public static void main(String[] not_in_use)
 {
 Scanner keyboard = new Scanner(System.in) ;

 print_sum(555, 222) ;

 System.out.print("\n As you can see, this program can print"
 + "\n the sum of two integers. Please, type in"
 + "\n two integers separated with a space:\n\n ") ;

 int first_integer = keyboard.nextInt() ;

 int second_integer = keyboard.nextInt() ;

 print_sum(first_integer, second_integer) ;
 }
}

9.2 Methods that take parameters 247

 static void print_sum(int first_integer_from_caller,
 int second_integer_from_caller)
 {
 int calculated_sum ;

 calculated_sum = first_integer_from_caller +
 second_integer_from_caller ;

 System.out.print("\n The sum of " + first_integer_from_caller
 + " and " + second_integer_from_caller
 + " is " + calculated_sum + ".\n") ;
 }

These parameter variables are also
local variables of method print_sum().
Method main() does not "see" these vari-
ables, but in method calls the caller must
provide values for these variables.

Method print_sum() does not do anything
else, but, after calculating the sum of the two
given integers, it prints the values of all variables
to the screen. Except by providing the necessary
parameter values, method main() cannot affect
the internal behavior of method print_sum().

Parameter variables can be used just
like any other variables declared inside a
method. Method print_sum() "sees"
only these three variables. The variables
declared inside method main() cannot be
modified by method print_sum().

Sums.java - 1 - 1. The method print_sum().

calculated_sum is an internal variable
inside method print_sum(). This local vari-
able is visible only to the statements of this
method. This variable cannot be modified by
the statements inside method main().

Sums.java - X. Two sums of integers calculated and printed with method print_sum().

D:\javafiles2>java Sums

 The sum of 555 and 222 is 777.

 As you can see, this program can print
 the sum of two integers. Please, type in
 two integers separated with a space:

 3344 11122

 The sum of 3344 and 11122 is 14466.

248 Chapter 9: Methods – Logical performing units in programs

// Decorations.java (c) Kari Laitinen

class Decorations
{
 static void multiprint_character(char character_from_caller,
 int number_of_times_to_repeat)
 {
 int repetition_counter = 0 ;

 while (repetition_counter < number_of_times_to_repeat)
 {
 System.out.print(character_from_caller) ;
 repetition_counter ++ ;
 }
 }

 static void print_text_in_decorated_box(String text_from_caller)
 {
 int text_length = text_from_caller.length() ;

 System.out.print("\n ") ;
 multiprint_character('=', text_length + 8) ;
 System.out.print("\n ") ;
 multiprint_character('*', text_length + 8) ;
 System.out.print("\n **") ;
 multiprint_character(' ', text_length + 4) ;

 System.out.print("**\n ** " + text_from_caller + " **\n **") ;

 multiprint_character(' ', text_length + 4) ;
 System.out.print("**\n ") ;
 multiprint_character('*', text_length + 8) ;
 System.out.print("\n ") ;
 multiprint_character('=', text_length + 8) ;
 System.out.print("\n ") ;
 }

 public static void main(String[] not_in_use)
 {
 String first_text = "Hello, world." ;

 print_text_in_decorated_box(first_text) ;

 print_text_in_decorated_box(

 "I am a computer program written in Java.") ;
 }
}

This method prints the character given as the first parameter
as many times as the second parameter specifies.

Decorations.java - 1.+ Method main() calls a method that takes a string as a parameter.

The parameter for method
print_text_in_-
decorated_box() can be
either a reference to a String
object containing the text to be
printed or a string literal.

9.2 Methods that take parameters 249

 static void print_text_in_decorated_box(String text_from_caller)
 {
 int text_length = text_from_caller.length() ;

 System.out.print("\n ") ;
 multiprint_character('=', text_length + 8) ;
 System.out.print("\n ") ;
 multiprint_character('*', text_length + 8) ;
 System.out.print("\n **") ;
 multiprint_character(' ', text_length + 4) ;

Here, reference to a String object is
passed as a parameter. In this kind of a method
call, the object is not copied for the called
method, but only a reference to the object is
passed to the callee. In practice this means that
the physical memory address of the object is
passed to the callee. Methods that have objects
as parameters use the objects that have been
created by the calling method.

This method "decorates" the text with a box that
consist of characters = and *. Because texts can be of
varied length, the width of the decoration box must
be adjusted to correspond to the text length. For this
reason, the string method length() is used here to
find out how many characters there are in the String
object referenced by text_from_caller. After this
statement has been executed, text_length contains
the character count of the text.

The caller of a method can give an arithmetic expression as a parame-
ter. In this call to multiprint_character(), the space character is
printed as many times as is the value of text_length plus 4. The value
of the arithmetic expression is calculated first, and that value is then
passed as a parameter.

Decorations.java - 1 - 1. Part of the method that prints text inside a decorative border.

Decorations.java - X. Texts printed inside decorative frames.

D:\javafiles2>java Decorations

 =====================

 ** **

 ** Hello, world. **
 ** **

 =====================

 ==
 **
 ** **
 ** I am a computer program written in Java. **

 ** **
 **
 ==

250 Chapter 9: Methods – Logical performing units in programs

A method which takes no parameters behaves always in the same way, regardless of
when and where it is called. But the behavior of a method that does take parameters
depends on what kinds of parameters are given. A method declared with parameters must
be given a correct number of parameters of the correct type. A method that takes parame-
ters is a kind of incomplete program until it is given the necessary parameter data.

The terminology of programming languages makes a distinction between those
method parameters that are declared in a method declarator and those parameters that are
given in a method call. The term formal parameters means the parameters in a method
declarator. The term actual parameters refers to the parameters given in a method call. For
example, the method declarator

static void
multiprint_character(char character_from_caller,
 int number_of_times_to_repeat)

specifies formal parameters character_from_caller and number_of_times_to_-
repeat. These parameters are formal because, although they are declared, they have no
values until method multiprint_character() is called in some other method. The
formal parameters of a method specify how the method can be called. You can imagine
that the above method declarator says: "Hi! I am method multiprint_character().
You can call me by giving first an actual parameter of type char, and then an actual
parameter of type int. Before my internal statements will be executed, the first actual
parameter is stored in variable character_from_caller, and the second actual param-
eter is stored in variable number_of_times_to_repeat."

The actual parameters are given in method calls. For example, in the method call

multiprint_character('=', text_length + 8) ;

’=’ and text_length + 8 are actual parameters which are evaluated, and the values are
copied to the formal parameters. Actual parameters may be variables, arithmetic or other
expressions, literal constants, or even calls to other methods. In the above method call, ’=’
is a character literal meaning the character code of the equal sign, and text_length + 8
is an arithmetic expression. Any expression used as an actual parameter is evaluated to
find a value to be copied to the corresponding formal parameter. Evaluation means that the
current value of the expression is calculated. In the above method call, the value of
text_length + 8 is calculated, and that value is copied to the formal parameter
number_of_times_to_repeat.

Those things which are called parameters in this book are called arguments in some
other books, especially in the context of other programming languages. The word "argu-
ment" is also used in the context of Java, for example, in the electronic Java documenta-
tion. To my knowledge, however, "parameter" is the more official word in the Java world.
Therefore, I try to avoid saying argument when meaning parameter. However, if some-
body speaks/writes about arguments, formal arguments, or actual arguments, it is very
likely that what is meant are parameters, formal parameters, and actual parameters,
respectively. To make things even more complex, I must warn you that some people use
the word "argument" to refer to actual parameters and the word "parameter" to refer to for-
mal parameters.

