
Some reasons to choose this book

Computer programs are textual descriptions written according to the rules of a program-
ming language. By writing computer programs we can make computers behave according
to our thoughts. This book explains how computer programs are written using the Java
programming language. Java is a popular language that is widely used both in educational
institutes and in industry. The main purpose of this book is, however, to teach computer
programming in general terms. After you have studied with this book, you’ll know how
computers operate; you’ll be familiar with the fundamentals of programming and the
essentials of object-oriented programming; and you’ll be prepared to study other books
related to computing and programming languages.

This book is written for people who are beginners in the field of computer program-
ming, but experienced people may find it beneficial as well. This book does not assume
any previous knowledge of computer programming. Logical operating principles of com-
puters are explained before the actual studies of programming begin. In addition, this book
promotes a programming style which prevents programming errors. All the examples of
computer programs are written so that the reader encounters a lot of natural-language
expressions instead of the traditional abbreviations of the computer world. This approach
aims to make learning easier.

The pages of this book are designed to maximize readability and understandability.
Examples of computer programs are presented in easy-to-read graphical descriptions.
Pages are even composed so that the reader does not need to turn them unnecessarily.

If you later, after having studied with this book, need to study the C++ and C# pro-
gramming languages, there are familiar books available to you. My two earlier books, A
Natural Introduction to Computer Programming with C# and A Natural Introduction to
Computer Programming with C++, have the same "look and feel" as this book. With these
books it is easy to switch from one programming language to another because they present
the same carefully-written computer programs using different programming languages.

To find more general information about this and my other programming books,
please visit www.naturalprogramming.com. There you can read, among other things, suc-
cess stories related to these books. The site provides free sample pages of my books. If
you want to know why I ended up writing these books, then you should read the Epilogue
and Preface of the C++ book.

Notes for teachers and other experienced programmers

This book differs from other programming books in that all its computer programs are
written with so-called natural names. This means that all names (identifiers) of variables,
constants, arrays, methods, classes, etc. consist of several natural words. The names are
written without abbreviations, and they thus look like the following

character_index  integer_index  character_from_keyboard
given_value  number_of_characters_read
string_to_search  replacement_string

Learning should be easier because the programs are written with readable names like
those above.

I have been teaching subjects related to computer programming for more than 10
years. My course materials have always contained only programs with natural names, and
I have encouraged students to use this kind of naming style in their programming work.
My experience is that those students who use only natural names in their programs tend to
produce better programs. I have also experienced personally that inventing informative
natural names is a way to think during the process of program writing, and when you think
clearly, you produce better programs and make less programming errors. For these rea-
sons, I want to recommend the naming style that is used in this book. I know that there are
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experienced programmers who do not want to give up using abbreviations in programs,
and people can have very strong opinions related to naming and other programming style
issues. I would, however, like to urge people to try programming without abbreviations.
Such programming style changes the physical appearance of programs and makes them
slightly longer, but once you get accustomed to such programs you may experience some-
thing new in the process of program creation.

The names in the example programs of this book are such that underscore characters
( _ ) are used to separate (or to join) the words of a name. This kind of naming style is, in
fact, not very common among Java programmers. For example, in many other Java books
names are capitalized, which means that the words of a name are written so that an upper-
case (capital) letter begins a new word in a name. According to this naming style, names
look like

nameToBeKnown    integerFromKeyboard
findSmallestNumberInArray     keyboardInputIsNumerical

while in this book these names are written in the following way

name_to_be_known   integer_from_keyboard
find_smallest_number_in_array   keyboard_input_is_numerical

I have decided not to follow the usual Java naming style for the following two reasons

• The underscore character makes space between the words of a name, and as we are
accustomed to the fact that there is generally space between the words of a text, the
names that are formed with underscores can be considered more natural and read-
able than capitalized names. (ConsiderWhatThisBookWouldLookLikeIfItsBody-
TextWouldBeWrittenThisWay.)

• The use of the underscore character helps to identify different types of names in
this book. Because the names of the standard Java classes and methods are capital-
ized, they can be easily recognized as standard Java names when most other names
contain underscore characters. For example, when the reader of this book finds
method names like nextLine, lastIndexOf, and charAt, he or she knows that
they are standard Java names because they are capitalized. On the other hand,
names like given_file_name, line_number, and text_line_from_file are
recognized as names invented by this author because they contain underscores.

The underscore character is most useful when the names in a program are long, and
in this book the names are longer than in other programming books. With the advent of the
Java language, the popularity of the underscore character has been decreasing. I think,
however, that underscores should not be abandoned in programming. The underscore
character serves an important purpose in this book, and it could be exploited in a similar
way in other contexts.
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What kind of computer will you need?

It is assumed in this book that the reader is using a personal computer (PC) that runs a ver-
sion of the Windows operating system. Various instructions (e.g. advice related to the
compilation of Java programs) are based on this assumption. However, if you are able to
find out by yourself how to write, compile, and execute Java programs on other types of
computers (e.g. Linux, UNIX, or Macintosh computers), those computers will do as well.
You just need to ensure that you are using version 5.0 or some later version of the Java
Development Kit. As Java is a general-purpose programming language, a Java Develop-
ment Kit is available for different types of computers.

Regardless of the type of your computer, it is an advantage if you are already able to
use the computer for purposes like word processing. A connection to the Internet will also
be needed on occasion, for example when you have to download electronic material from
the Internet. You do not necessarily have to purchase any programming tools for your
computer. In this book, we use programming tools that are freely available on the Internet.

Some advice for studying

Although I have tried my best while writing this book, and I believe this is a very good
textbook for a person who is starting to learn computer programming, it is still a fact that
computer programming can be a difficult subject to begin with. When you read about
something new in this book, you may not understand it immediately. At the start it might
be possible that things just won’t begin to become clear. That has happened to me, and still
I became quite an expert in computer programming. So my first suggestion is

Do not worry if you do not understand something immediately.

It often happens that some things which you’re studying may seem difficult in the begin-
ning, and are only understood later, perhaps the following day when you have re-read the
text which had been so difficult. Therefore, it is of prime importance to learn to accept that
there are difficult things which cannot be understood quickly.

As this book is written so that it should be read sequentially from the beginning
towards the end, I advise you to do so. If you encounter something that is already familiar
to you, it is up to you if you want to skip some pages. But I would like to remind you, that
it may deepen your knowledge, and in any case it does not harm you at all, if you also read
the pages that seem to contain something familiar.

While you are reading have a pencil or pen at hand, and do not hesitate to

• underline or otherwise mark those sentences which you think are important;

• write your own thoughts in the margins and empty spaces of the pages;

• add your own explanation texts near the example programs; and

• mark, for example with a question mark (?), those parts of the text which you did
not understand, and which you need to read again later.

Because you learn also by doing, it is important that you write about the things you are
studying. Sometimes it may even be helpful to write down the things you do not under-
stand.You can write down on the pages of this book (provided that it is your own book),
and you should also have a separate notebook for writing. In addition to writing, it is
important that you discuss matters of computer programming orally with your friends and
fellow students. Sometimes it may help you to understand a computer program when you
try to explain it to another person.

You just can’t learn computer programming without writing programs by yourself.
There are plenty of programming exercises in parts II and III of this book. You should do
at least part of those exercises with a computer. One possible approach for doing the exer-
cises is that you first read the text of a section and then do the exercises in that section.



vi A natural introduction to computer programming with Java

You should also try to invent your own computer programs. It’s nice to work with pro-
grams which nobody else has. In Part I of this book there are less exercises, but you should
read that part before starting programming in the subsequent parts.

When you try programming exercises, you must use the keyboard of your computer.
And in the future, you will probably use a computer and its keyboard daily in your work.
To write effectively with a computer keyboard, and to prevent writing mistakes, I recom-
mend that you learn to type with all 10 fingers. Computer keyboards are designed so that
they can be used effectively with 10 fingers. The skill of typing with all 10 fingers can be
learned through daily half-hour exercises over a few weeks. The time you spend learning
this skill will be paid back hundreds of times in the future. There are special computer pro-
grams with which you can learn the 10-finger typing system. If you can’t find a suitable
program, you can borrow an old typing manual from a public library.

While you study this book and do exercises of computer programming, you will
notice that you need a lot of information to write computer programs, and you cannot sim-
ply remember all the necessary information. The needed information may be in this book
but you do not know on which page the information is located. To find information, you
need to learn to use the index that is at the end of this book. The index lists keywords and
phrases which are used on certain pages. It is normal that you may not find a certain piece
of information by checking the page of your first search word. In such situations you just
need to be patient. The index is a useful tool to search for information, but you must use
ingenuity to invent several search words which can be looked up in the index. This advice
applies to the indexes in other books as well. (The index of a book is a kind of Internet
search engine whose "Internet" is the book. An advantage of a book is that it is a more
organized information space than the Internet.)

Some pieces of information are regularly needed when computer programs are being
written. For example, you may often have to check things in Appendix A. One possible
way to make it easier to find frequently-used data is to take copies of the important pages
and hang the copies on the wall near the place where you study or use your computer.
Another possibility is to make the frequently-used pages easy to find by attaching pieces
of tape or paper clips to them. With these kinds of little arrangements it is possible to make
learning and computer programming somewhat easier for you.

The purpose of this book is to be your first book about computer programming. In
the beginning, this book should be enough. However, as you proceed towards the end of
this book, you shall become more and more experienced in computer programming, and
you may not consider yourself a beginner any more. You may want to write longer com-
puter programs or try other fields of computer programming. When you become more
experienced, I recommend that you also acquire other programming books. I have person-
ally found out that what cannot be found in one book, may be found in another book. After
studying this book, you should be able to read books that are written for more experienced
programmers. Especially if you start working as a computer programmer, you or your
employer should not hesitate to invest in computer programming books. An appropriate
book may easily save many working hours, and the price of the book is usually not much
more than the price of a single working hour.

It might be a good idea to re-read this introductory section after you have done some
computer programming.
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The structure of this book

This book is a textbook, a book for studying purposes. This is very much like other text-
books. The text and other elements of the book are organized in chapters. Then there are
some things that do not belong to chapters. The overall structure of this book is the follow-
ing

• introductory pages (this page belongs to these)

• chapters (there are 16 of them)

• appendices (these are identified with letters A, B, ...)

• index (this is very important to find information contained in the book)

• some useful tables for computer programmers

When you are learning computer programming, it is important that you learn to under-
stand various structures of a text. This book has a certain structure which is described
here. Like this book, computer programs are written according to certain structural rules.

Most of the text of this book is found in the chapters. Each chapter has a number.
Chapters consist of sections which are numbered 1.1, 1.2, ... 2.1, 2.2, ... 3.1, 3.2, ... etc.
Each section in this book consists of

• body text which is present in every section

• zero or more figures which are referred to in the body text by, for example, "Figure
3-2 shows how ..."

• zero or more tables which are referred to in the body text by, for example, "... is
summarized in Table 6-3."

• zero or more program descriptions which are referred to with a file name in the
body text by, for example, "Program Weddingdates.java is an example ..."

• zero or more information boxes which give interesting information related to the
subject discussed in the section

• zero or more exercise boxes which present exercises related to the subject of the
section.

Figures and tables are numbered so that the chapter number is mentioned. For exam-
ple, when Figure 10-4 is discussed, you know that it is the fourth figure in Chapter 10 and
there are three preceding figures in that chapter. Figures and tables are usually numbered
this way in textbooks.

Program descriptions are a unique feature of this book. They form a systematic way
to present computer programs, and to show how programs behave when they are executed
on a computer. The structure of program descriptions is explained in the following intro-
ductory section.

Example of an information box

In some sections you can find boxes like this one. There are two types of boxes:

• An information box usually presents information that is related to the subject discussed in the section, but 
the contents of an information box are usually not so important as the matters discussed in the body text 
of the section.

• An exercise box contains exercises which you should do after reading the text of the section. After the 
table of contents of this book, you can find a list which helps you to find those pages which contain exer-
cise boxes.
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The structure of program descriptions

Computer programs are presented in a unique and exact manner in this book. These pre-
sentations are called program descriptions. The program descriptions resemble figures but
they are not figures because their captions are different, and they do not follow the num-
bering system of figures. The first program descriptions are included in Chapter 2, and
they are used throughout parts II and III of the book. The program descriptions may look a
little bit strange at first, but after you become familiar with them, you’ll find out that they
are a very informative way to describe computer programs and their operation. This intro-
ductory section explains the notations used in program descriptions. You might read this
section after you have studied some source programs.

The following is the simplest form of a program description that describes an execut-
able program: 

Program descriptions contain text "balloons" in 
which the structure and behavior of the program in 
question is explained. You are now reading a text 
balloon. The arrow points to that part of the pro-
gram which is being explained by the balloon. The 
arrow of this balloon points to the beginning of the 
actual program text. It is important to note that the 
balloons are not part of the program, they just 
explain it.

Filename.java - 1.  Caption which describes the source program.

//  Filename.java 

using System ;

class  Filename
{
   public static void main( String[] not_in_use )
   {
      // The actual program is always written by using
      // this Courier font. In the Courier font all
      // characters have the same physical width.

      // This program is an example which does nothing.
   }
}

There can be several balloons 
with varying sizes in a single source 
program description, and several 
arrows can originate from a single 
balloon. The arrow of this balloon 
points to the last line in the program 
text. The balloons make the pro-
gram descriptions look a little bit 
like cartoons. That should make this 
book fun to read.

Filename.java - X.  Caption which says something about the execution of the program.

   What appears on the screen of the computer when the program is
   executed is shown in this kind of box.



Introductory pages ix

A simple program description consists of two separate sub-descriptions which both
have their own captions, i.e., some text below the descriptions:

• The source description presents the source program text of the program. The cap-
tion of the source description begins Filename.java - 1.  ...

• The execution description shows what happens on the screen of a computer when
the program is executed. The caption of the execution description is identified by
the letter X and it begins Filename.java - X.  ...

The key idea here is that both a program, and its program description, are identified
with a file name. You can use the same file name that is used in a caption of a program
description to search for the program among the electronic material associated with this
book. For example, because the captions of the first program description on the first pages
of Chapter 2 begin First.java - ..., you know that you can find the actual program in a file
named First.java.

When program descriptions are referred to in the body text of this book, they are
identified using the file name. For example, when I write "Program First.java is the first
example of a Java program", I refer to all descriptions which have captions which begin
First.java - ...

Many examples of computer programs in this book are so long that their text does
not fit into a single source description. In these cases several source descriptions are
needed to present the program. For example, a program description in Chapter 15 consists
of four sub-descriptions with the captions

Events.java - 1:  The declaration of ...

Events.java - 2:  Using an ArrayList array ...

Events.java - 3.  Sorting and combining ...

Events.java - X.  Three lists printed ...

When there is a colon (:) written in the caption of a source description, it means that the
program text continues in the following source description. In the final source description
there is a full stop (.) after the number.

In some cases, it is necessary to explain just part of a program in a separate source
description. In these situations, the plus sign (+) is used in the caption of a source descrip-
tion. For example, the first program in Chapter 6, Largeint.java, has a caption that begins

Largeint.java - 1.+  A program to find ... 

The full stop (.) means that this is the final source description of the program, but the plus
sign (+) means that some part of the text shown in this description is presented in more
detail in another source description. The caption of the detailed description is equipped
with a new level number and it begins

Largeint.java - 1-1. The if constructs that ...

The captions used in program descriptions form a kind of language where numbers,
the colon, the full stop, the plus sign, and the letter X convey certain meanings. When you
see a caption like

Somefile.java - 2:+ ...

you should be able to deduce that the entire program is presented in at least three separate
source descriptions, and one or more parts of this second source description are explained
in descriptions that have captions like

Somefile.java - 2 -1 ...

Somefile.java - 2 - 2 ...


