
CHAPTER 18

MIDLETS – JAVA PROGRAMS FOR MOBILE DEVICES

Sun Microsystem provides a Java platform that is commonly installed in mobile phones.
This Java platform is called Java Micro Edition (ME). The Java platform that we use in
personal computers is Java Standard Edition (SE). The Java Micro Edition differs from the
Standard Edition so that it is a lighter version of Java. This means, for example, that the
number of standard Java classes is smaller in the Java Micro Edition.

In this chapter we shall learn to make some basic programs that run on devices that pro-
vide the Java Micro Edition. In practice this means that you can run these programs in
many types of mobile phones. The Java applications that run on mobile devices are called
midlets. The first three letters in this word refer to the acronym of Mobile Interconnected
Device, MID. Mobile phones are devices that are interconnected via a network.

Although mobile phones are computers that contain processors, they differ from tradi-
tional computers in that their displays are small, their keyboards have only numerical and
some special keys, and usually they lack a pointing device such as a mouse. These limima-
tions must be taken into account when programs such as midlets are designed for mobile
phones.

In this chapter we shall study the basic structure of Java midlets. As Java midlets provide a
graphical user interface (GUI), it is beneficial if you are familiar with Java Standard Edi-
tion GUI programming. Java midlets are constructed by utilizing standard Java classes.
This means, for example, that all midlets are derived from a standard class named MIDlet.
We will learn how to build midlet user interfaces with standard classes, how to draw and
show images on the display, and how to use threads in midlet programs.

2007-08-28 This file was created.
2008-06-05 Last modification.

The page size of this document is A4, but you can print this on a letter size page.

Although this document is written so that it slightly
resembles a chapter of a book, this does not belong to my
Java book A Natural Introduction to Computer Programming
in Java. This document is additional material which you
might use after you know the basics of programming in Java.

700 Chapter 18: Midlets – Java programs for mobile devices

HelloSimpleMIDlet.java – A program that says "Hello"

// HelloSimpleMIDlet.java (c) Kari Laitinen

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class HelloSimpleMIDlet extends MIDlet
{
 Display display_of_this_midlet = Display.getDisplay(this) ;

 Form form_for_string_item = new Form("THIS IS THE TITLE OF A Form") ;

 public HelloSimpleMIDlet()
 {
 StringItem text_to_be_shown =
 new StringItem("", "Hello. I am a simple Java midlet.") ;

 form_for_string_item.append(text_to_be_shown) ;
 }

 protected void startApp() throws MIDletStateChangeException
 {
 display_of_this_midlet.setCurrent(form_for_string_item) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

In these example programs, we always have
this line which creates a Display object which
represents the physical display of the device
(e.g. a mobile phone) in which the program will
be executed.

HelloSimpleMIDlet.java - 1. A midlet that shows text inside a StringItem object.

Midlets – Java programs that can run
on mobile phones and other small
devices – can be constructed so that a
new application-specific midlet class is
derived from a standard class named
MIDlet. In this case, the name of the
new class is HelloSimpleMIDlet.

Every midlet must have methods named startApp(), pause-
App(), and destroyApp(). The program execution system invokes
these methods when a midlet application starts executing, when it is
paused, or when it is entirely destroyed. The startApp() method,
for example, makes the Form object as the currect display content
when this program starts executing.

HelloSimpleMIDlet.java – A program that says "Hello" 701

HelloSimpleMIDlet.java - X. The midlet is being executed in an emulator.

The text "Hello. I am a simple Java
midlet" that is shown on the display is
stored inside a StringItem object.
StringItem objects represent items that
contain text that can be seen, but not mod-
ified, by the user. The StringItem object
is attached to a Form object with the
append() method. A Form object can
contain items that are shown on the
screen.

702 Chapter 18: Midlets – Java programs for mobile devices

GraphicsDemoMIDlet.java – drawing methods demonstrated

// GraphicsDemoMIDlet.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class GraphicsDemoCanvas extends Canvas
{
 int canvas_width = getWidth() ;
 int canvas_height = getHeight() ;

 public void paint(Graphics graphics)
 {
 graphics.setColor(255, 255, 255) ; // white color clears the canvas
 graphics.fillRect(0, 0, canvas_width, canvas_height) ;

 graphics.setColor(0, 0, 0) ; // black color is used for drawing

 graphics.drawString("Canvas size is " + canvas_width
 + " x " + canvas_height, 20, 20,
 Graphics.TOP | Graphics.LEFT) ;

 // Drawing a horizontal line into the middle of canvas area.
 graphics.drawLine(0, canvas_height / 2,
 canvas_width, canvas_height / 2) ;

 graphics.fillRect(20, 70, 100, 40) ;

 graphics.fillArc(20, 170, 100, 80, 45, 270) ;
 graphics.drawArc(100, 170, 100, 80, 315, 90) ;
 }
}

When we want to construct a midlet which
draws graphical objects such as lines and rect-
angles to the display, we need to derive a new
canvas class from the standard Canvas class.
Inside this new class we write a method
named paint() which can use the drawing
methods provided in class Graphics. In this
program the name of the new canvas class is
GraphicsDemoCanvas.

GraphicsDemoMIDlet.java - 1: A midlet that demonstrates methods of class Graphics.

At the beginning of the paint() method, white color is set as the
current drawing color. The numerical values 255, 255, and 255
describe the red, blue, and green components in white color. When a
large filled rectangle is drawn onto the display, the display is cleared
of possible older drawings.

Canvas means in traditional sense a
piece of strong cloth on which an artist can
create a painting. In Java Canvas is a class
from which you can derive new classes
which represent drawing surfaces. Into a
class that is derived from the standard
Canvas class you must write a method
named paint() which will take care of
the actual drawing and painting activities.
Method paint() will be called automati-
cally when the program is being executed,
and it will receive a reference to a Graph-
ics object as a parameter. Methods of
class Graphics can be used to perform the
actual drawing activities.

GraphicsDemoMIDlet.java – drawing methods demonstrated 703

public class GraphicsDemoMIDlet extends MIDlet
{
 Display display_of_this_midlet = Display.getDisplay(this) ;
 GraphicsDemoCanvas canvas_of_this_midlet = new GraphicsDemoCanvas() ;

 protected void startApp() throws MIDletStateChangeException
 {
 display_of_this_midlet.setCurrent(canvas_of_this_midlet) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

GraphicsDemoMIDlet.java - 2. The GraphicsDemoMIDlet class.

The MIDlet-based class of this program is rather sim-
ple as the drawing activities are carried out in the Can-
vas-based class.

Here, an object of class GraphicsDemoCanvas is
created, and it is set as the current display contents in the
startApp() method which is called automatically when
this midlet starts executing.

The pauseApp() and destroyApp() methods are
often empty in simple programs. The program execution
system calls these methods when it wants the midlet
application to pause or to terminate.

704 Chapter 18: Midlets – Java programs for mobile devices

GraphicsDemoMIDlet.java - X. The midlet is being executed in an emulator.

Methods fillArc()and drawArc()are
used to produce these two drawings.
Methods whose names begin with the
word fill fill the contents of a graphical
shape with the current drawing color.
These methosds to draw arcs actually can
draw much more than their names imply.
An arc of 360 degrees is an oval. An oval
whose height is the same as its width is a
circle.

SumMIDlet – Using TextField objects to input data from the user 705

SumMIDlet – Using TextField objects to input data from the user

// SumMIDlet.java (c) Kari Laitinen

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class SumMIDlet extends MIDlet
 implements CommandListener, ItemStateListener
{
 Display display_of_this_midlet = Display.getDisplay(this) ;

 TextField first_integer_text_field = new TextField("First integer: ",
 "", 8, TextField.NUMERIC) ;
 TextField second_integer_text_field = new TextField("Second integer:",
 "", 8, TextField.NUMERIC) ;
 TextField result_text_field = new TextField("Calculated sum:",
 "0", 8, TextField.NUMERIC |
 TextField.UNEDITABLE) ;

 Form form_of_this_midlet = new Form("SumMIDlet") ;

 Command exit_command = new Command("EXIT", Command.EXIT, 1) ;

 public SumMIDlet()
 {
 first_integer_text_field.setLayout(Item.LAYOUT_CENTER) ;

 form_of_this_midlet.append(first_integer_text_field) ;
 form_of_this_midlet.append(second_integer_text_field) ;
 form_of_this_midlet.append(result_text_field) ;

 form_of_this_midlet.setItemStateListener(this) ;

 form_of_this_midlet.addCommand(exit_command) ;
 form_of_this_midlet.setCommandListener(this) ;
 }

SumMIDlet.java - 1: A program that can calculate the sum of two integers.

With the append() method the
TextField objects are attached to a
Form object which will be put on the
display in the startApp() method.

This midlet implements the inter-
faces CommandListener and Item-
StateListener which means that it
has the methods commanAction()
and itemStateChanged().

TextField objects are used to receive
two integers from the user. The sum of the
two integers will be shown in an uneditable
TextField. The parameter Text-
Field.NUMERIC specifies that only num-
bers can be written to the text fields.

This line specifies that "this" object will listen
to what happens to the objects that are attached to
the Form. In practice this means that the item-
StateChanged() method will be called when the
texts in the TextFields are modified.

706 Chapter 18: Midlets – Java programs for mobile devices

 protected void startApp() throws MIDletStateChangeException
 {
 display_of_this_midlet.setCurrent(form_of_this_midlet) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }

 public void commandAction(Command given_command,
 Displayable display_content)
 {
 if (given_command == exit_command)
 {
 destroyApp(false) ;
 notifyDestroyed() ;
 }
 }

SumMIDlet.java - 2: The "mandatory" methods and the commandAction() method.

Method commandAction() imple-
ments the CommandListener inter-
face. The two parameters that will be
supplied to it tell which command was
given, and what was being shown on the
display when the command was given.

Method startApp() will be
called after the constructor of this
class is executed. In the begin-
ning the Form of this midlet is put
visible on the display.

A Command object is a possible command
that is attached to a so-called soft key of a
mobile phone. Usually mobile phones have two
soft keys whose actual functionality is deter-
mined by Command objects. In this program
there is only the EXIT command in use, and
this method is called automatically when the
command is given.

SumMIDlet – Using TextField objects to input data from the user 707

 public void itemStateChanged(Item item_which_changed_state)
 {
 String first_integer_text = first_integer_text_field.getString() ;
 String second_integer_text = second_integer_text_field.getString() ;

 if (first_integer_text.length() == 0)
 {
 first_integer_text = "0" ;
 }

 if (second_integer_text.length() == 0)
 {
 second_integer_text = "0" ;
 }

 int first_integer = Integer.parseInt(first_integer_text) ;
 int second_integer = Integer.parseInt(second_integer_text) ;

 int sum_of_two_integers = first_integer + second_integer ;

 String sum_text = "" + sum_of_two_integers ;

 result_text_field.setString(sum_text) ;
 }
}

This itemStateChanged() method will be called by the program
execution system when the text of a TextField object is modified. It
would be possible to find out which TextField object was modified
since item_which_changed_state references the modified object.
(TextField is a subclass of class Item.) This method does not, how-
ever, bother which text field was modified. The sum of the two numbers
is calculated always after one of the TextField objects is modified.

SumMIDlet.java - 3. The method that is invoked when a TextField is modified.

If the two text fields are empty, i.e., the
user has not yet written anything to them,
this program acts as if they contained zeroes.
The static method parseInt() of class
Integer is used to convert a String object
to an int value. The parseInt() method
throws an exception if the string is an empty
string or it cannot, because of some other
reason, convert the string to an int value.

The TextField class provides the
methods getString() and setString()
which can be used to read and write the
texts that are currently stored in the text
fields. The setString() method is used
here to set the result into the third text field.

708 Chapter 18: Midlets – Java programs for mobile devices

SumMIDlet.java - X. Here the program has calculated the sum of 2233 and 4455.

Yhteenlaskun tuloksen sisältävä viimeinen
tekstikenttä on sellainen että sen arvoa ei
midletin käyttäjä voi muuttaa. Tuommoisen
tekstikentän teksti näkyy himmeämpanä kuin
muiden tekstikenttien tekstit. Tämän teks-
tikenttäolion luonnissa on käytetty vakiota
TextField.UNEDITABLE jolla saadaan
aikaan ei-editoitava tekstikenttä.

KeyCodesMIDlet.java – a midlet that reacts to key pressings 709

KeyCodesMIDlet.java – a midlet that reacts to key pressings

// KeyCodesMIDlet.java (c) Kari Laitinen

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class KeyCodesCanvas extends Canvas
 implements CommandListener
{
 String key_code_as_string = "No keys pressed" ;

 int key_code_numerical = 0 ;
 int game_action_code = 0 ;

 Command select_hexadecimal_printing = new Command("Hexadecimal",
 Command.SCREEN, 1) ;
 Command select_decimal_printing = new Command("Decimal",
 Command.SCREEN, 1) ;
 Command select_binary_printing = new Command("Binary",
 Command.SCREEN, 1) ;

 Command last_given_command = select_decimal_printing ;

 public KeyCodesCanvas()
 {
 addCommand(select_hexadecimal_printing) ;
 addCommand(select_decimal_printing) ;
 addCommand(select_binary_printing) ;

 setCommandListener(this) ;
 }

KeyCodesMIDlet.java - 1: Demonstrating the handling of key pressings.

Three Command objects are added to "this" can-
vas. With these commands the user can specify in
which numbering system the the key codes are
shown on the screen. The three Command objects
are automatically put into a menu from which the
user can select individual commands.

In this program all functionality is specified in the
class that is derived from the standard Canvas class.
This class implements the CommandListener inter-
face which means that it has the commandAction()
method to handle Soft Key commands.

710 Chapter 18: Midlets – Java programs for mobile devices

 public void commandAction(Command given_command,
 Displayable display_content)
 {
 last_given_command = given_command ;
 }

 public void keyPressed(int key_code)
 {
 game_action_code = getGameAction(key_code) ;

 key_code_numerical = key_code ;

 key_code_as_string = getKeyName(key_code) ;

 repaint() ;
 }

last_given_command is a data field in
this class. During the execution of this program
it points to one of the three Command objects.
The value of last_given_command will be
checked in the paint() method, and key
codes are printed either in decimal, hexadeci-
mal, or binary numbering system.

KeyCodesMIDlet.java - 2: The methods that react to commands and key pressings.

When a method named keyPressed() is written to a
Canvas-based class, the method will be called when a key is
pressed down while the canvas is visible on the screen. The
method receives a key code as a parameter. The received key
code can be converted to a so-called game action code or to a
string with the Canvas methods getGameAction() and
getKeyName().

By running this program, you can find out that the key
code, that is received as a parameter, corresponds to the stan-
dard character codes. See documentation of class Canvas to
find out more information about game action codes.

By calling the
repaint() method you
can request that the pro-
gram execution system
updates the canvas, i.e.,
calls the paint()
method. The paint()
method will be called
always after a key has
been pressed down.

KeyCodesMIDlet.java – a midlet that reacts to key pressings 711

 protected void paint(Graphics graphics)
 {
 graphics.setColor(255, 255, 255) ;
 graphics.fillRect(0, 0, getWidth(), getHeight()) ;

 graphics.setColor(0, 0, 0) ;

 String game_action_code_to_print = "" + game_action_code ;
 String key_code_numerical_to_print = "" + key_code_numerical ;

 if (last_given_command == select_hexadecimal_printing)
 {
 game_action_code_to_print =
 Integer.toHexString(game_action_code) + "H" ;
 key_code_numerical_to_print =
 Integer.toHexString(key_code_numerical) + "H" ;
 }
 else if (last_given_command == select_binary_printing)
 {
 game_action_code_to_print =
 Integer.toBinaryString(game_action_code) + "B" ;
 key_code_numerical_to_print =
 Integer.toBinaryString(key_code_numerical) + "B" ;
 }

 graphics.drawString("game_action_code: " + game_action_code_to_print,
 10, 20,
 Graphics.TOP | Graphics.LEFT) ;

 graphics.drawString("key_code_numerical: " + key_code_numerical_to_print,
 10, 40,
 Graphics.TOP | Graphics.LEFT) ;

 graphics.drawString("key_code_as_string: " + key_code_as_string,
 10, 60,
 Graphics.TOP | Graphics.LEFT) ;
 }
}

In this program this paint() method
will be executed always after the user has
pressed a key of the mobile phone key-
board.

KeyCodesMIDlet.java - 3: The paint() method in the KeyCodesCanvas class.

The last parameter for the drawString() method specifies how
the text is printed in relation to the given point. If you replace the
Graphics.LEFT with Graphics.RIGHT, the text will be printed to
the left of the point (10, 60), and it will not be completely visible on
the screen.

If the user has selected hexadecimal print-
ing of key codes, the static method toHex-
String() of class Integer is used to convert
the two int values to strings.

712 Chapter 18: Midlets – Java programs for mobile devices

public class KeyCodesMIDlet extends MIDlet
{
 Display display_of_this_midlet = Display.getDisplay(this) ;
 KeyCodesCanvas key_codes_canvas = new KeyCodesCanvas() ;

 protected void startApp() throws MIDletStateChangeException
 {
 display_of_this_midlet.setCurrent(key_codes_canvas) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

An object of type KeyCodesCanvas is created first and
then it is set visible on the display.

KeyCodesMIDlet.java - 4. The short KeyCodesMIDlet class.

KeyCodesMIDlet.java - X. Key 5 has been pressed before the menu is activated.

PictureViewingMIDlet.java – showing images on small screen 713

PictureViewingMIDlet.java – showing images on small screen

// PictureViewingMIDlet.java

import java.io.* ;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class PictureViewingCanvas extends Canvas
{
 int index_of_current_picture = 0 ;

 String[] picture_file_names = { "/marilyn_by_warhol.png",
 "/nicole_kidman.png",
 "/terminator2.png",
 "/kate_winslet.png",
 "/scanned_leave.png" } ;

 Image[] pictures_to_be_shown = new Image[picture_file_names.length] ;

 public PictureViewingCanvas()
 {
 for (int picture_index = 0 ;
 picture_index < picture_file_names.length ;
 picture_index ++)
 {
 try
 {
 pictures_to_be_shown[picture_index] =
 Image.createImage(picture_file_names[picture_index]) ;
 }
 catch (IOException caught_io_exception)
 {
 System.out.print("\n Image object not created "
 + picture_file_names[picture_index]) ;
 }
 }
 }

For each picture file an object of type Image is created. As it
is possible that method createImage() throws an exception
when the picture file cannot be read successfully, the Image
objects must be created inside a try-catch construct.

PictureViewingMIDlet.java - 1: The first part of class PictureViewingCanvas.

This program shows a set of pictures on the
screen of the mobile phone. One picture is shown
at a time. The user can select another picture with
the arrow keys. When Sun Java Wireless Toolkit
is used, the picture files must be stored to the res
folder of the project. The file names of the picture
files are stored into an initialized array of type
String[]. The other array, whose type is
Image[], will contain references to Image
objects that are created in the constructor.

714 Chapter 18: Midlets – Java programs for mobile devices

 protected void paint(Graphics graphics)
 {
 graphics.setColor(255, 255, 255) ; // white
 graphics.fillRect(0, 0, getWidth(), getHeight()) ;

 graphics.drawImage(pictures_to_be_shown[index_of_current_picture],
 2, 0,
 Graphics.TOP | Graphics.LEFT) ;
 }

 public void keyPressed(int key_code)
 {
 int game_action_code = getGameAction(key_code) ;

 switch (game_action_code)
 {
 case UP:
 case LEFT:

 if (index_of_current_picture > 0)
 {
 index_of_current_picture -- ;
 }
 else
 {
 index_of_current_picture = pictures_to_be_shown.length - 1 ;
 }

 break ;

 case DOWN:
 case RIGHT:

 if (index_of_current_picture < (pictures_to_be_shown.length - 1))
 {
 index_of_current_picture ++ ;
 }
 else
 {
 index_of_current_picture = 0 ;
 }

 break ;
 }

 repaint() ;
 }
}

The value of data field index_of_current_picture stipu-
lates which picture will be drawn by the paint()method. Here,
the value of the variable is incremented, or set to zero if it already
has reached its maximum allowed value.

PictureViewingMIDlet.java - 2: The rest of class PictureViewingCanvas.

An object of type Image is drawn to the screen with the
drawImage() method of class Graphics. The image is drawn
so that the coordinates (2, 0) refer to its upper left corner.

PictureViewingMIDlet.java – showing images on small screen 715

public class PictureViewingMIDlet extends MIDlet
{
 Display display_of_this_midlet = Display.getDisplay(this) ;
 PictureViewingCanvas picture_viewing_canvas = new PictureViewingCanvas() ;

 protected void startApp() throws MIDletStateChangeException
 {
 display_of_this_midlet.setCurrent(picture_viewing_canvas) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

PictureViewingMIDlet.java - 3. The MIDlet-based class of the program.

In this program the MIDlet-based class, the
class that is derived from class MIDlet, is short.
An object of type PictureViewingCanvas is
created, and this object is then set as the content
of the display.

PictureViewingMIDlet.java - X. The file terminator2.png is being shown here.

This program is a slightly bad midlet as it does
not provide an Exit command. If you run this pro-
gram on a real phone, you can exit the program
when you press the key that normally terminates a
phone call.

716 Chapter 18: Midlets – Java programs for mobile devices

MovingBallMIDlet.java – a program that uses a List object

// MovingBallMIDlet.java (c) Kari Laitinen

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class MovingBallCanvas extends Canvas
 implements CommandListener
{
 MIDlet master_midlet ;
 Display midlet_display ;

 int ball_position_x, ball_position_y ;

 // The color is specified with a hexadecimal value 0x00RRGGBB
 // so that each color component (red, green, and blue) can
 // have value 0 ... 0xFF.

 int current_color = 0x00FF0000 ; // red is the initial color

 // The following two initialized arrays must be organized so that
 // the RGB value of a color has the same index as the name
 // of the color in question.

 int[] rgb_color_specifications = { 0x00FF0000, 0x0000FF00, 0x000000FF,
 0x007F0000, 0x00007F00, 0x0000007F,
 0x0000FFFF, 0x00FF00FF, 0x00FFFF00,
 0x00000000, 0x007F7F7F } ;

 String[] selectable_colors = { "Red", "Green", "Blue",
 "Dark red", "Dark green", "Dark blue",
 "Cyan", "Magenta", "Yellow",
 "Black", "Grey" } ;

 List color_selection_list = new List("Select Ball Color",
 List.IMPLICIT,
 selectable_colors, null) ;

 Command exit_command = new Command("Exit", Command.EXIT, 1) ;

 Command change_color_command = new Command("Change color",
 Command.SCREEN, 1) ;

When you create a Command with
parameter Command.EXIT, the command
will be attached to that Soft Key which is
the usual Exit key of the phone.

MovingBallMIDlet.java - 1: The data members of class MovingBallCanvas.

 This program displays a ball on the screen.
The color of the ball can be changed. The possible
ball colors can be selected from a menu that is
built by using class List. When a List object is
created with parameter List.IMPLICIT, it will be
easy to process a selection from the list.

MovingBallMIDlet.java – a program that uses a List object 717

 public MovingBallCanvas(MIDlet given_master_midlet,
 Display given_display)
 {
 master_midlet = given_master_midlet ;
 midlet_display = given_display ;

 ball_position_x = getWidth() / 2 - 20 ;
 ball_position_y = getHeight() / 2 - 20 ;

 addCommand(change_color_command) ;
 addCommand(exit_command) ;

 setCommandListener(this) ;
 color_selection_list.setCommandListener(this) ;
 }

 public void commandAction(Command given_command,
 Displayable display_content)
 {
 if (given_command == change_color_command)
 {
 midlet_display.setCurrent(color_selection_list) ;
 }
 else if (given_command == List.SELECT_COMMAND)
 {
 int index_of_selected_color =
 color_selection_list.getSelectedIndex() ;

 // The following assignment statement selects the right color
 // when the array pointed by rgb_color_specifications is initialized
 // so that it corresponds to the array containing the selectable
 // colors.

 current_color = rgb_color_specifications[index_of_selected_color] ;

 midlet_display.setCurrent(this) ;
 }
 else if (given_command == exit_command)
 {
 // With the following method call this midlet informs the
 // runtime system that this method is ready for destruction.
 // The runtime system does not call the destroyApp() method
 // before the destruction operation.

 master_midlet.notifyDestroyed() ;
 }
 }

This statement will be executed after
the user has pressed the Soft Key that
represents the Change color command.
The color selection menu will be the new
display content.

MovingBallMIDlet.java - 2: The second part of class MovingBallCanvas.

List.SELECT_COMMAND is a kind of
automatic command that is generated when a
selection is made on a list that is specified as
List.IMPLICIT. Here we start using a new
selected color. The color selection menu is
removed from the display as "this" Canvas-
based object is set as display content.

718 Chapter 18: Midlets – Java programs for mobile devices

 public void keyPressed(int key_code)
 {
 int game_action_code = getGameAction(key_code) ;

 switch (game_action_code)
 {
 case UP:
 ball_position_y -= 3 ;
 break;

 case DOWN:
 ball_position_y += 3 ;
 break;

 case RIGHT:
 ball_position_x += 3 ;
 break;

 case LEFT:
 ball_position_x -= 3 ;
 break;
 }

 repaint() ;
 }

 protected void paint(Graphics graphics)
 {
 graphics.setColor(255, 255, 255) ; // white
 graphics.fillRect(0, 0, getWidth(), getHeight()) ;

 graphics.setColor(current_color) ;

 graphics.drawRect(0, 0, getWidth() - 1, getHeight() - 1) ;

 graphics.fillArc(ball_position_x, ball_position_y,
 40, 40, 0, 360) ;

 graphics.drawString("(" + ball_position_x
 + ", " + ball_position_y + ")",
 2, 0,
 Graphics.TOP | Graphics.LEFT) ;
 }
}

MovingBallMIDlet.java - 3: The third and last part of class MovingBallCanvas.

A method named keyPressed() will be called by
the runtime system when this MovingBallCanvas
object is the display content. The ball coordinates are
modified so that the ball appears to move when the
arrow keys are pressed.

Before the ball is drawn with
fillArc() method, a kind of
frame is drawn around the canvas
with drawRect() method.

MovingBallMIDlet.java – a program that uses a List object 719

public class MovingBallMIDlet extends MIDlet
{
 Display midlet_display = Display.getDisplay(this) ;
 MovingBallCanvas moving_ball_canvas =
 new MovingBallCanvas(this, midlet_display) ;

 public MovingBallMIDlet()
 {
 }

 protected void startApp() throws MIDletStateChangeException
 {
 midlet_display.setCurrent(moving_ball_canvas) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

MovingBallMIDlet.java - 4. The actual MIDlet-based class of the program.

When a reference to "this" MIDlet-based class is
passed as a parameter to the MovingBallCanvas con-
structor, it will be possible inside the MovingBallCanvas
class to invoke methods for "this" midlet object.

720 Chapter 18: Midlets – Java programs for mobile devices

MovingBallMIDlet.java - X. The two possible display contents.

The left picture shows the midlet right after it has started executing. When a
ball is visible on the screen, it is possible to move it with the arrow keys. When
the Soft Key that represents the "Change color" command is pressed, the dis-
play will contain a color selection list as shown by the right picture. Note that
there are no Soft Key commands attached to the color selection list. A selection
can be made with the "Select" key of the phone.

RandomNumbersMIDlet.java – using classes Random ja ChoiceGroup 721

RandomNumbersMIDlet.java – using classes Random ja ChoiceGroup

// RandomNumbersMIDlet.java (c) Kari Laitinen

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.Random ;

class RandomNumbersCanvas extends Canvas
 implements CommandListener
{
 Display midlet_display ;

 int generated_random_integer = 0 ;
 double generated_random_double = 0 ;

 Form settings_form = new Form("SETTINGS") ;

 String[] integer_ranges = { "0 ... 9", "0 ... 99", "0 ... 999" } ;
 ChoiceGroup integer_range_selection = new ChoiceGroup(
 "Range for random integers:",
 Choice.EXCLUSIVE,
 integer_ranges, null) ;

 String[] double_selection_text = { "Show only a double value:" } ;
 ChoiceGroup double_selection = new ChoiceGroup("Generate random double:",
 Choice.MULTIPLE,
 double_selection_text,
 null) ;
 Command command_to_make_settings =
 new Command("Settings", Command.SCREEN, 1) ;
 Command command_to_exit_settings =
 new Command("Exit settings", Command.SCREEN, 1) ;

 public RandomNumbersCanvas(Display given_display)
 {
 midlet_display = given_display ;

 settings_form.append(integer_range_selection) ;
 settings_form.append(double_selection) ;
 settings_form.addCommand(command_to_exit_settings) ;
 settings_form.setCommandListener(this) ;

 addCommand(command_to_make_settings) ;
 setCommandListener(this) ;
 }

RandomNumbersMIDlet.java - 1: RandomNumbersCanvas data fields and constructor.

ChoiceGroup objects can
be attached to a Form object.
The parameters such as
Choice.EXCLUSIVE or
Choice.MULTIPLE specify
how individual choices of a
group affect other choices in
the same group.

The command that is used to activate the Settings menu is attached to
canvas. The command with which we exit the Settings mode is attached
to the Settings form.

This program shows how a kind of Settings menu
can be created by using standard classes Form,
ChoiceGroup, and Command.

722 Chapter 18: Midlets – Java programs for mobile devices

 public void commandAction(Command given_command,
 Displayable current_display_content)
 {
 if (given_command == command_to_make_settings)
 {
 midlet_display.setCurrent(settings_form) ;
 }
 else if (given_command == command_to_exit_settings)
 {
 midlet_display.setCurrent(this) ;
 }
 }

 public void keyPressed(int key_code)
 {
 if (key_code >= '0' && key_code <= '9')
 {
 Random random_number_generator = new Random() ;

 if (double_selection.isSelected(0))
 {
 generated_random_double =
 random_number_generator.nextDouble() ;
 }
 else if (integer_range_selection.getSelectedIndex() == 0)
 {
 generated_random_integer =
 random_number_generator.nextInt(10) ;
 }
 else if (integer_range_selection.getSelectedIndex() == 1)
 {
 generated_random_integer =
 random_number_generator.nextInt(100) ;
 }
 else if (integer_range_selection.getSelectedIndex() == 2)
 {
 generated_random_integer =
 random_number_generator.nextInt(1000) ;
 }
 }

 repaint() ;
 }

This statement sets "this"
object as display content, which
means that the settings form is
removed from the display and
the canvas is brought back.

RandomNumbersMIDlet.java - 2: Methods commandAction() and keyPressed().

This midlet generates a random number always after
a numerical key has been pressed. First it examines
whether the generation of a double random number is
enabled. If not, it generates a random integer within the
selected range.

Random numbers can be generated with methods next-
Double() and nextInt() after a random number generator
of type Random has been created. nextDouble() returns a
random double value that is greater than or equal to zero and
smaller than but not equal to one.

RandomNumbersMIDlet.java – using classes Random ja ChoiceGroup 723

 protected void paint(Graphics graphics)
 {
 graphics.setColor(255, 255, 255) ; // White color
 graphics.fillRect(0, 0, getWidth(), getHeight()) ;

 graphics.setColor(0, 0, 0) ; // Black color

 graphics.drawString("LAST GENERATED RANDOM NUMBER:",
 10, 20, Graphics.TOP | Graphics.LEFT) ;

 if (double_selection.isSelected(0))
 {
 graphics.drawString("" + generated_random_double,
 10, 40, Graphics.TOP | Graphics.LEFT) ;
 }
 else
 {
 graphics.drawString("" + generated_random_integer,
 10, 40, Graphics.TOP | Graphics.LEFT) ;
 }
 }
}

RandomNumbersMIDlet.java - 3: The last method paint() of class RandomNumbersCanvas.

The paint() method prints the random value generated in the
keyPressed() method. Either the content of data field
generated_random_integer or generated_random_double is
printed depending on the settings made. Method isSelected() of
class ChoiceGroup allows us to examine whether a certain choice
inside a ChoiceGroup is selected. The parameter that is given to the
isSelected() method is the index of the choice. A zero refers to
the first choice. Here we examine a ChoiceGroup that contains only
a single choice and that is referred to with index value 0.

724 Chapter 18: Midlets – Java programs for mobile devices

public class RandomNumbersMIDlet extends MIDlet
{
 Display midlet_display = Display.getDisplay(this) ;
 RandomNumbersCanvas random_numbers_canvas =
 new RandomNumbersCanvas(midlet_display) ;

 protected void startApp() throws MIDletStateChangeException
 {
 midlet_display.setCurrent(random_numbers_canvas) ;
 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 }
}

RandomNumbersMIDlet.java - 4. The short MIDlet-based class of the program.

This class is again short because all functionality
of the program is built into the Canvas-based class.
A reference to the Display object is passed as a
parameter to the constructor of RandomNumbers-
Canvas. This way the methods of the canvas class
can change the content of the display.

RandomNumbersMIDlet.java - X. The canvas and the Settings menu of the program.

The generation of
double random
numbers is selected
here. The generated
double values are
smaller than 1 and
larger or equal to 0.

ClockMIDlet.java – a midlet that runs an extra thread 725

ClockMIDlet.java – a midlet that runs an extra thread

// ClockMIDlet.java Copyright (c) Kari Laitinen

import java.util.* ;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class ClockCanvas extends Canvas
 implements Runnable
{
 Thread thread_that_runs_the_clock ;
 boolean thread_must_be_executed = false ;

 Calendar time_now ;

 int canvas_width, canvas_height ;

 int clock_center_point_x, clock_center_point_y ;

 public ClockCanvas()
 {
 canvas_width = getWidth() ;
 canvas_height = getHeight() ;

 clock_center_point_x = canvas_width / 2 ;
 clock_center_point_y = canvas_height / 2 + 10 ;

 }

 public synchronized void start_animation_thread()
 {
 if (thread_that_runs_the_clock == null)
 {
 thread_that_runs_the_clock = new Thread(this) ;
 thread_must_be_executed = true ;
 thread_that_runs_the_clock.start() ;
 }
 }

ClockMIDlet.java - 1: A program that displays a clock that runs.

A Thread object is created and set to run in parallel
with the midlet. The extra thread starts executing auto-
matically after the start() method is invoked for the
Thread. The runtime system calls the run() method
after the call to the start() method is executed. The
run() method then represents the extra thread. A refer-
ence to "this" ClockCanvas object is passed as a param-
eter when the Thread object is created. This way the
runtime system knows where the run() method is
located.

726 Chapter 18: Midlets – Java programs for mobile devices

 public void stop_animation_thread()
 {
 if (thread_that_runs_the_clock != null)
 {
 thread_must_be_executed = false ;
 thread_that_runs_the_clock.interrupt() ;

 thread_that_runs_the_clock = null ;
 }
 }

 public void run()
 {
 while (thread_must_be_executed == true)
 {
 repaint() ;

 try
 {
 Thread.sleep(1000) ; // Suspend for 1 second.
 }
 catch (InterruptedException caught_exception)
 {
 // No actions to handle the exception.
 }
 }
 }

The extra thread will terminate when
thread_must_be_executed is
assigned the value false. This causes
the while loop inside the run() method
terminate. The extra thread "dies" when
the run() method terminates. By calling
the interrupt() method for the
Thread object, is is ensured that the
extra thread is "awoken to die" in the
case it happens to be sleeping.

ClockMIDlet.java - 2: Methods in class ClockCanvas.

Methods start_animation_thread() and
stop_animation_thread() are called from the
destroyApp(), pauseApp() and startApp()
methods of the ClockMIDlet class. The extra
thread is terminated when the midlet is put to
paused state or destroyed altogether.

Method run() is called automatically after the thread has been
created and activated. Method run() specifies what the additional
thread does. This run()method orders the canvas to be repainted,
and then it goes to sleep for one second. After each slept second, these
activities are repeated. After the repaint() method is executed, the
runtime system generates a call to the paint() method of the canvas.
The static Thread.sleep() method must be called inside a try-
catch constructs because it can throw an InterruptedException.

ClockMIDlet.java – a midlet that runs an extra thread 727

 public void paint(Graphics graphics)
 {
 String[] days_of_week = { "Sun", "Mon", "Tue",
 "Wed", "Thu", "Fri", "Sat" } ;

 String[] names_of_months = { "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec" } ;

 time_now = Calendar.getInstance() ;

 int current_year = time_now.get(Calendar.YEAR) ;
 int current_day = time_now.get(Calendar.DAY_OF_MONTH) ;
 int month_index = time_now.get(Calendar.MONTH) ;
 int number_of_day_of_week = time_now.get(Calendar.DAY_OF_WEEK) ;

 String current_month = names_of_months[month_index] ;

 String current_day_of_week = days_of_week[number_of_day_of_week - 1] ;

 int current_hours = time_now.get(Calendar.HOUR_OF_DAY) ;
 int current_minutes = time_now.get(Calendar.MINUTE) ;
 int current_seconds = time_now.get(Calendar.SECOND) ;

 graphics.setColor(255, 255, 255) ; // white
 graphics.fillRect(0, 0, canvas_width, canvas_height) ;

 graphics.setColor(0, 0, 0) ; // black

 graphics.drawString("" + current_day_of_week +
 " " + current_month +
 " " + current_day +
 ", " + current_year,
 2, 0, Graphics.TOP | Graphics.LEFT) ;

The current time and date of the
mobile phone can be found out by creat-
ing a Calendar object. As this paint()
method is invoked to draw the clock
once in every second, we get an illusion
of a clock that runs.

ClockMIDlet.java - 3: The first part of the paint() method in class ClockCanvas.

A method named get() can be used to receive
time-related information from the Calendar
object. Parameters such as Calendar.YEAR,
Calendar.MONTH, etc. are needed to specify the
information that is requested. These parameters are
specified in class Calendar.

728 Chapter 18: Midlets – Java programs for mobile devices

 String minutes_string = "00" + current_minutes ;

 minutes_string = minutes_string.substring(
 minutes_string.length() - 2,
 minutes_string.length()) ;

 String seconds_string = "00" + current_seconds ;

 seconds_string = seconds_string.substring(
 seconds_string.length() - 2,
 seconds_string.length()) ;

 graphics.drawString(current_hours + ":" + minutes_string +
 ":" + seconds_string,
 2, 12, Graphics.TOP | Graphics.LEFT) ;

 /* The following coordinates were originally developed for a
 larger clock on a larger display. In this program they are
 divided by 3 in order to get coordinates that are suitable
 for smaller displays. */

 int[] minute_hand_end_points_x =

 { 0, 11, 21, 31, 41, 50, 59, 67, 74, 81,
 87, 91, 95, 97, 99,
 100, 99, 97, 95, 91, 87, 81, 74, 67, 59,
 50, 41, 31, 21, 11,
 0, -11, -21, -31, -41, -50, -59, -67, -74, -81,
 -87, -91, -95, -97, -99,
 -100, -99, -97, -95, -91, -87, -81, -74, -67, -59,
 -50, -41, -31, -21, -11 } ;

 int[] minute_hand_end_points_y =

 { -100, -99, -97, -95, -91, -87, -81, -74, -67, -59,
 -50, -41, -31, -21, -11,
 0, 11, 21, 31, 41, 50, 59, 67, 74, 81,
 87, 91, 95, 97, 99,
 100, 99, 97, 95, 91, 87, 81, 74, 67, 59,
 50, 41, 31, 21, 11,
 0, -11, -21, -31, -41, -50, -59, -67, -74, -81,
 -87, -91, -95, -97, -99 } ;

The clock time is shown also in textual form.
These statements ensure that a leading zero is printed
before single-digit minute and seconds values. This
means that the time "five minutes and three seconds
past seven" is written 7:05:03, and not 7:5:3.

ClockMIDlet.java - 4: The paint() method of class ClockCanvas continues.

These initialized arrays contain
coordinates that will be used to deter-
mine possible end points for the clock
hands. The coordinates are relative to
the clock center point.

ClockMIDlet.java – a midlet that runs an extra thread 729

 int[] hour_hand_end_points_x =

 { 0, 7, 13, 19, 24, 30, 35, 40, 44, 48,
 52, 55, 57, 58, 59,
 60, 59, 58, 57, 55, 52, 48, 44, 40, 35,
 30, 24, 19, 13, 7,
 0, -7, -13, -19, -24, -30, -35, -40, -44, -48,
 -52, -55, -57, -58, -59,
 -60, -59, -58, -57, -55, -52, -48, -44, -40, -35,
 -30, -24, -19, -13, -7 } ;

 int[] hour_hand_end_points_y =

 { -60, -59, -58, -57, -55, -52, -48, -44, -40, -35,
 -30, -24, -19, -13, -7,
 0, 7, 13, 19, 24, 30, 35, 40, 44, 48,
 52, 55, 57, 58, 59,
 60, 59, 58, 57, 55, 52, 48, 44, 40, 35,
 30, 24, 19, 13, 7,
 0, -7, -13, -19, -24, -30, -35, -40, -44, -48,
 -52, -55, -57, -58, -59 } ;

 // Let's print an 8-point dot in the center of the clock.

 graphics.fillArc(clock_center_point_x - 4,
 clock_center_point_y - 4, 8, 8, 0, 360) ;

 // The following loop prints dots on the clock circle.

 int minute_index = 0 ;

 while (minute_index < 60)
 {
 graphics.fillArc(

 clock_center_point_x +
 minute_hand_end_points_x[minute_index] / 3 - 2,

 clock_center_point_y +
 minute_hand_end_points_y[minute_index] / 3 - 2, 4, 4, 0, 360) ;

 minute_index = minute_index + 5 ;
 }

For the hour hand we have different
coodinates as it is shorter than the other
clock hands.

ClockMIDlet.java - 5: More of the paint() method of class ClockCanvas.

As the above arrays of clockface coordinates were origi-
nally developed for a larger clock, the coordinates are here
divided by 3 in order to make them suitable for a small clock on
mobile phone display.

730 Chapter 18: Midlets – Java programs for mobile devices

 int hour_index ;

 if (current_hours >= 12)
 {
 hour_index = current_hours - 12 ;
 }
 else
 {
 hour_index = current_hours ;
 }

 // Remember that we have 60 minutes in every hour,
 // but not 60 hours in a day.

 hour_index = hour_index * 5 + current_minutes / 12 ;

 // Let's draw the hour hand of the clock.

 graphics.drawLine(clock_center_point_x,
 clock_center_point_y,

 clock_center_point_x +
 hour_hand_end_points_x[hour_index] / 3,
 clock_center_point_y +
 hour_hand_end_points_y[hour_index] / 3) ;

 // The minute and second hands are longer than the hour hand.
 // Therefore we use different coordinates to print them.

 graphics.drawLine(clock_center_point_x,
 clock_center_point_y,

 clock_center_point_x +
 minute_hand_end_points_x[current_minutes] / 3,
 clock_center_point_y +
 minute_hand_end_points_y[current_minutes] / 3);

 graphics.drawLine(clock_center_point_x,
 clock_center_point_y,

 clock_center_point_x +
 minute_hand_end_points_x[current_seconds] / 3,
 clock_center_point_y +
 minute_hand_end_points_y[current_seconds] / 3);

 }
}

With these statements it is decided where end of the hour
hand should be on the circle that has 60 possible positions.
Whether the current time is before noon or after noon, and
how many minutes of the current hour have elapsed, affect
the positioning of the hour hand.

ClockMIDlet.java - 6: The last part of class ClockCanvas.

The clock hands are drawn
with the drawLine() method.
To draw the hour hand, we use
hour coordinates. Minute hand
is drawn with minute coordi-
nates.

ClockMIDlet.java – a midlet that runs an extra thread 731

public class ClockMIDlet extends MIDlet
 implements CommandListener
{
 Display midlet_display = Display.getDisplay(this) ;
 ClockCanvas clock_canvas = new ClockCanvas() ;

 Command exit_command = new Command("Exit", Command.EXIT, 1) ;

 protected void startApp() throws MIDletStateChangeException
 {
 midlet_display.setCurrent(clock_canvas) ;
 clock_canvas.start_animation_thread() ;

 clock_canvas.addCommand(exit_command) ;
 clock_canvas.setCommandListener(this) ;
 }

 protected void pauseApp()
 {
 clock_canvas.stop_animation_thread() ;
 }

 protected void destroyApp(boolean unconditional_destruction_required)
 {
 clock_canvas.stop_animation_thread() ;
 }

 public void commandAction(Command given_command,
 Displayable display_content)
 {
 if (given_command == exit_command)
 {
 destroyApp(false) ;
 notifyDestroyed() ;
 }
 }
}

ClockMIDlet.java - 7. The MIDlet-based class of the program.

Also in the case of this midlet most of the program functionality is
programmed inside the Canvas-based ClockCanvas class. Inside this
ClockMIDlet class we activate and deactivate the extra thread that runs
the clock. The methods start_animation_thread() and
stop_animation_thread(), which start and stop the extra thread are
inside the ClockCanvas class.

732 Chapter 18: Midlets – Java programs for mobile devices

ClockMIDlet.java - X. The midlet is being exexuted on March 23, 2006 at 6:39:47 p.m.

Here the clock is rather small when compared to
the display size. To make the clock larger, you
could divide the clockface coordinates, for
instance, by 2 instead of 3.

