VTT PUBLICATIONSNO. 243

This document is my doctora thesis that was accepted in 1995 at the Univer-
sity of Oulu, Finland. What | have said on the pages of this document, is still
valid. Nowadays, | write books that teach computer programming in the most
natural way. You can find more information about my books at

Www.natural programming.com

The only thing that | do not like in this thesis is the smal example of a com-
puter program of which | show many versions. The program checks the vaidity
of a customer number. As| am now more experienced in writing simple text-
book examples of computer programs, | could produce a better example pro-
gram for this thesis. So, when you read this thesis, please forgive me that the
example program is somewhat artificial athough it fulfils its purpose in show-
ing different programming styles.

Oulu, Finland, October 12, 2003. Kari Laitinen.

Natural naming in software development and
maintenance

Kari Laitinen

VTT Electronics/ Embedded Software

Academic dissertation to be presented, with the assent of the Faculty
of Science, University of Oulu, for public discussion in the Auditorium L10,
Linnanmaa, on October 12th, 1995, at 12 o'clock noon.

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1995

This thesis was published as a book by the Technical Research Centre of
Finland (VTT) in 1995 in their VTT PUBLICATIONS series. Something
like 300 copies of the book were printed by the VTT offset printing facility.
VTT may till be selling copies of the printed book. For more information,
go to the Internet addess http://www.vtt.fi

The following information was given on the second page of the printed
book.

Copyright: © Valtion teknillinen tutkimuskeskus (VTT) 1995
ISBN 951-38-4781-0

ISSN 1235-0621

UDC 681.3:681.3.06

Keywords: computer systems programs, computer programs, computers,
programming, software devel opment, software maintenance, software docu-
mentation, programming, naming, natural languages, human factors, docu-
ments

ABSTRACT

The understandability of source programs and other types of software docu-
ments is important for several reasons. Software developers have to read
documents written by their colleagues, and software maintainers often need
to study old source programs about which they have no previous knowledge.
Naming is one important factor that affects how understandable source pro-
grams are. In general, natural naming means avoiding abbreviations in soft-
ware documentation. In the context of source programs, natural naming
means that program elements such as variables, constants, tables, and func-
tions should be named using whole natural words of a natural language with
respect to the grammatical rules of the same natural language.

This thesis introduces methods and tools to facilitate the use of natural nam-
ing in software development and maintenance. To support the use of natural
naming in programming, source program elements are classified and spe-
cific naming rules provided for different program elements. An analytical
name creation method is provided to make natural names in source programs
consistent with written text in other types of software documents.

Commonly used programming languages do not require any specific naming
rules to be followed. For this reason, an experimental programming lan-
guage is introduced in this thesis. The language is designed to support the
use of natural naming. Existing source programs usualy contain many
abbreviated names. To make existing programs more maintainable, intelli-
gent disabbreviation tools have been developed as part of this study. Disab-
breviation means replacing abbreviated names with natural ones in existing
source programs.

The naming methods and tools have been evaluated by testing them in labo-
ratory experiments and in practical software development and maintenance
situations. The natural naming principles have been taught to software
developers in different organizations. According to feedback received from
users and the data collected in the experiments, natural naming is a promis-
ing approach to increase the understandability of software documents, and
the methods and tools introduced in this thesis facilitate the use of this nam-
ing approach.

PREFACE

PERSONAL HISTORY

In 1978, | started studying electrical engineering at the University of Oulu in
Finland. The first programming course at the university introduced Fortran.
That was a shock to me because | understood virtually nothing about it. Only
after studying the textbook by Hakalahti et al. (1978) a couple of years later,
did | start to understand the secrets of computing. Actually, | learned so
much from that book that | decided to orient my studies towards computers
and software. | was then, and still am, interested in writing. | thought that
computers were an interesting field because they can be commanded
through writing.

After my studies | worked at a company called Oy Edacom Ab (now part of
ICL Edacom Oy) as a software devel oper for cash terminal systems. | partic-
ipated in many software projects, learned several programming languages,
and developed many kinds of source programs ranging from database man-
agement to communications software. The work also involved software
maintenance. | consider that | got avery good overview of software devel op-
ment while | was working at Edacom. That company also provided me the
opportunity to work abroad at other companies which were devel oping soft-
ware for Edacom cash terminals.

In September, 1988, | had been working about one and half years at the
Dutch Edacom representative, Computercentrum C. van de Velden in Arn-
hem, The Netherlands. Then, in the morning of September 21, 1988, |
wanted to write one piece of source code that would enhance the system we
had been developing about half ayear. When | wrote that program, | decided
not to use any abbreviations in the names | used in the program. It turned out
to be possible to write such a program, and that particular program turned
out to work very well. (Part of that program is shown in Figure 3 in this the-
sis.) | cannot tell exactly why | tried this kind of naming style. | had aready
been using quite long names earlier, but perhaps living in the liberal Dutch
society made me willing to try new programming styles. Anyway, | have
used this naming style, which I now call natural naming, ever since.

| was able to continue the practical experiments with natural naming when |
later worked at the British Edacom representative, Edacom Data Systemsin
Stansted, England, during the winter and spring of 1989. At Edacom Data
Systems | wrote a manual entitled " Suggestions for Software Production and
Documentation”. That manual includes some rules for natural naming.

In June 1989, | started to work at the Computer Technology Laboratory of
the Technical Research Centre of Finland (VTT). The same organization is
now part of VTT Electronics. This doctoral thesis is a document that

4

describes most of my work at VTT. My first project at VTT was a technol-
ogy transfer project called SULATEK. In this project | was able to further
develop my ideas about natural naming.

VTT aso provided a possibility to go to work abroad. Thistime | wanted to
explore the new world, and | spent the year 1993 at the U. S. Naval Post-
graduate School in Monterey, California. There my main research subject
was to study how programming languages could be enhanced to make them
more suitable for natural naming.

After returning to VTT from the U.S.A. | started working in an ESPRIT 111
project called AMES, Application Management Environments and Support.
This doctoral thesis was completed while | was working on the AMES
project. A software maintenance tool called InName was the main result of
my work in AMES.

During the time | have been working at VTT, | have simultaneously carried
out postgraduate studies at the University of Oulu. These studies have
resulted in this doctoral thesis. Although | originally studied electrical engi-
neering, | have carried out my postgraduate studies in the Department of
Information Processing Science of the University of Oulu. The reason that |
switched to another department within the university is that my subject is
rather far from electrical engineering.

ACKNOWLEDGMENTS

Prof. Veikko Seppanen, currently the head of VTT Electronics / Embedded
Software, has greatly contributed to my work as he has read nearly all scien-
tific texts | have written. He has a superb ability to give comments, make
remarks, and suggest improvements in papers he reads.

Prof. Pentti Kerola from the University of Oulu has served as the supervisor
of my postgraduate studies. | have had many encouraging and interesting
discussions with Prof. Kerola. He has been especially helpful in increasing
my knowledge about methodological aspects of scientific work.

Prof. Neil C. Rowe from the U. S. Naval Postgraduate School responded
positively to my request to work abroad. He has been very important for this
thesis particularly because he showed me how texts can be manipulated with
Prolog, and he made the first disabbreviation tool.

Mr. Jorma Taramaa provided me the chance to work in the AMES project,
and develop a better disabbreviation tool. Mr. Markku Heikkila did excellent
work while we were devel oping this tool.

Dr. Cornelia Boldyreff from the University of Durham, U. K., and Prof.
Jorma Sajaniemi from the University of Joensuu, Finland, have served as the

5

official reviewers of thisthesis. They have provided me important feedback,
and suggested clarifying improvements into this thesis.

Mr. Douglas Foxvog has checked the language in this thesis and in most of
my scientific texts. In addition to advice in English, he has given many com-
ments on the content as well. Mr. Adth van Bale has proofread the Dutch
language in Figure 8(a).

| wish to express my deepest and warmest gratitude to all the people | have
mentioned above.

In addition, |1 would like to thank the following people: Mr. Derek Alex-
ander, Ms. AriaArai, Mr. Juhani Eskelinen, Prof. Hannu Hakal ahti, Mr. Kari
Hakkarainen, Mr. Seppo Huotari, Dr. Ahmad M. Ibrahim, Mr. llkka Kallio,
Mr. Daniel Keller, Mr. Kari Kumpulainen, Mr. Raino Lintulampi, Mr. llkka
Marjomaa, Mr. Timo Mukari, Ms. Minna Makérainen, Dr. Tapio Pietikéinen,
Prof. Petri Pulli, Mrs. Heli Puustinen, Dr. Bengt-Olof Qvarnstrém, Prof.
Samuli Saukkonen, Prof. Timothy Shimeall, Ms. Carla Stiff, Dr. Shorei
Takada, Mr. Aarne Taube, Ms. Eija Tervonen, Mr. Matias Vierimaa, Dr.
Seppo Visala, Prof. Dennis Vol pano, and Dr. Matti Weckstrom. These people
have helped me in various ways. some have expressed especialy positive
attitudes towards my work, some have commented my working papers,
some have expressed interesting opinions and ideas, some have helped to
make this thesis, etc. | would also like to express my thanks to the people
working in the AMES project, and to my colleagues at VTT with whom |
have worked over the years.

Finally, 1 would like to thank the organizations which have funded my
research. Thiswork has been supported by the Technical Research Centre of
Finland (VTT), the Technology Development Centre of Finland (TEKES),
the companies which participated in the SULATEK project during the years
from 1989 to 1992 (Nokia Maobile Phones Oy, TH-Engineering Oy, Prosoft,
Elektrobit Oy, Polar Electro Oy, Pohjois Fiiri Oy, and Oy Edacom Ab), the
Defense Advanced Research Projects Administration as part of the 13
Project under AO 8939, and the Finnish foundations Jenny ja Antti Wihurin
rahasto and Tauno Tonningin s&étio.

Oulu, Finland, August 1995

Kari Laitinen

LIST OF INCLUDED PUBLICATIONS

This thesis includes six papers which have been accepted in proceedings of
international conferences and scientific journals. These papers are used here
with the permission of their original publishers. The included publications
are the following: (WARNING: The papers are not included in the .pdf
version of thethesis.)

VI

Laitinen, K. and Seppanen, V. 1990. Principles for Naming Program
Elements, A Practical Approach to Raise Informativity of Program-

ming. In: Part | of Proceedings of InfoJapan'90 International Confer-
ence. Tokyo: Information Processing Society of Japan. Pp. 79-86.

Laitinen, K. and Mukari, T. 1992. DNN-Disciplined Natural Naming,
A Method for Systematic Name Creation in Software Development. In:
Proceedings of 25th Hawaii International Conference on System Sci-
ences, Vol. I1: Software Technology. Los Alamitos, California: IEEE
Computer Society Press. Pp. 91-100.

Laitinen, K. 1994. Pacific: A Programming Language Based on the
|deaof Natural Naming. In: Baeza-Yates, R. (editor) Computer Science
2: Research and Applications. New York: Plenum Press. Pp. 529-540.

Rowe, N. C. and Laitinen, K. 1995. Semiautomatic Disabbreviation of
Technical Text. To appear in Information Processing and Management.

Laitinen, K., Taramaa, J., Helkkil& M., and Rowe, N. C. 1995.
Enhancing Maintainability of Source Programs through Disabbrevia-
tion. To appear in the Journal of Systems and Software.

Laitinen, K. 1995. Natural Naming in Software Development: Feed-
back from Practitioners. In: Proceedings of 7th International Confer-
ence on Advanced Information Systems Engineering (CAiSE*95).

L ecture Notes in Computer Science, Vol. 932. Berlin: Springer Verlag.
Pp. 375-388.

The author of this thesis is the principal author of all the included papers
except PAPER V. Dr. Veikko Seppanen helped in finding an appropriate
structure for PAPER |. Mr. Timo Mukari provided the idea of object-oriented
naming for PAPER Il. PAPER IV has been mainly written by Prof. Neil C.
Rowe, while the author participated in the research and provided some para-
graphs, references, and suggestions to improve the paper. Mr. Jorma Tara-
maa and Prof. Neil C. Rowe provided suggestions and insightsfor PAPER V.
Mr. Markku Heikkil& participated in the research described in PAPER V.

CONTENTS

ABSTRACT ..ottt sttt e e se e s e e e nees e e s ennesneerensenen 3
=l O S 4
Personal NiStOrYcoiieieiieeceece e 4
ACKNOWIEAGMENLS........eeieeciecie e e 5
LIST OF INCLUDED PUBLICATIONS.......ocooveeseeere e 7
(@@ VIV 1 8
1 INTRODUCTIONcoiiiiiiesieiee et re s e e ere e see e s ssenes 10
1.1 Software development: ashort history..........ccceeeveevieveeceenen, 10
1.2 Software devel opment as a documentation process................... 13
1.2.1 Source programs and other software documents.......... 13
1.2.2 Documentsin the development process...........ccccue... 15
1.2.3 Documentsvs. knowledge.........cccocvvvevveieeieciee s 17
1.2.4 Documentsin software maintenance...........ccoceveerveenees 18
1.3 Theidea of natural NAMINGcccccveieeriierieeie e 20
1.4 Outline Of the thESISociiieeriree s 24
2 PROGRAMMING AND NAMING STYLES.....c.cccovreeereeece e 25
2.1 The concept of programming Styl€.......ccccvveveevievieseeveeceenee 25
2.2 Different Naming StYI€S.......ccooveieeiie e 31
2.3 Justifying the use of natural NAMINGccccceveeveeveeveececceeee, 34
3 RESEARCH PROBLEMocviiiiierieeree et 39
3.1 Problem definition and research activities...........cccoceveveierennenn, 39
3.2 Research MethodSocvviiieiiiee e e 41
3.3 Justifying the methodological approachcccceeevviveieennnnnee 44
4 RELATED WORKctii ittt snesre e 48
4.1 Introduction to related WOrK.........c.cooveievenenieneeie e, 48
4.2 Approachesto increasing understandability of source programs..
49
4.2.1 Guidelinesfor naming and programming style............. 49
4.2.2 Program visualization toolS..........ccccceeeveeveeieeieesceennn 52
4.2.3 Literate programmingccceeeeevueereeseeseesseesseessesnes 54
4.2.4 Easy-to-read programming languages. COBOL and

SNAP. .ttt 57
4.3 Toolsto aid in software maintenancCe..........cccceveeeeeveereeeeseenenn, 59

4.4 Fields outside software domain: Linguistics, semiotics, and phi-
101 o] o] V2SS 62
4.5 Discussion Of related WOrK...........ccoooveievineninnieeie e, 68
5 INTRODUCTION TO THE INCLUDED PAPERS........ccccoevvivinirnnnn. 70
5.1 Paper |I: Guidelines for natural Naming.........ccccceeeveeveeseeseennens 70
5.2 Paper II: A method for initial name creationcccccceeeeeueee. 72

5.3 Paper I11: A programming language to support natural naming 75
8

5.4 Paper 1V: Disabbreviation of technical textccccoceveveennneee 78

5.5 Paper V: Disabbreviation of source programs..........cccceceeeveenne 79

5.6 Paper VI: An empirical study of the use of natural naming....... 81
6 CONCLUDING DISCUSSIONcccoviiereererieneereneesesseeneeseseseesesssessenes 84

6.1 Research summary and evaluation.............cccccceevceevceeiceeseecenee 84

6.2 Possibilities for further research ... 87
REFERENCES........cooooi ettt s ses 90
PAPERS

(WARNING: The papersare not included in the .pdf version of the the-
Sis.)

1 INTRODUCTION
1.1 SOFTWARE DEVELOPMENT: A SHORT HISTORY

Now, in 1995, we can say that modern el ectronic computers are about half a
century old. Although computer-like devices were constructed even earlier
(e.g. by Charles Babbage), only during the last five decades has the technol -
ogy of computing equipment been steadily improving.

An important mathematical model for present-day computers was published
nearly sixty years ago by Alan Turing (1937a). He imagined a machine
which could store and read information from a memory device, a tape, and
showed that this imaginary machine could solve mathematical problems.
L ater, about fifty years ago, Alan Turing, John von Neumann, and other sci-
entists and engineers were aready building the first real programmable com-
puters (Hodges 1983). Like modern computers, the early computers could be
progranmed to perform different kinds of computations. Early program-
ming was done by designing the machine code of an application by hand.
Mathematics was used as an aid in the creation of the machine code. Alan
Turing, for instance, used base-32 arithmetic when he was designing calcu-
lation operations for an early computer. Other people had difficulties in
understanding what Alan Turing was doing (Hodges 1983).

From the very beginning, computer programming was seen to be a difficult
task. Therefore, different means to aid program construction were devel-
oped. These means involved inventing program description rules which
made it possible to use other symbol s than just numbers to describe the oper-
ations of a computer, and to use the computer itself to produce its own
machine code for the designed computation. Program description rules
which allow machine processing are called programming languages. Simple
progranming languages, which allow machine instructions and memory
locations to be described with symbols, are called assembly languages. More
advanced languages, which allow, for instance, the use of mathematical and
logical symbols in programs, are called high-level programming languages.
Thefirst high-level language, Fortran, was introduced about forty years ago.
Other more advanced, and more or less popular, languages have emerged
afterwards (Sammet 1972, MacLennan 1983, Horowitz 1987). Although
programming with high-level languages was first considered as "automatic
progranming” (Balzer 1985) and new programming languages have been
steadily emerging, programming still seen as a difficult task.

Nowadays it iscommon to use the terms software development and software
engineering instead of programming. Developing an application for a com-
puter is thus seen to comprise many activities other than just writing a pro-
gram. Software is also a better word than program, because computer
applications are not just single programs these days. One application may

10

consist of hundreds or thousands of separate programs. Although there are
definitions for the term software (1SO 9000-3 1991, Laitinen 1992), the term
is widely used to denote the opposite of hardware. Hardware is easier to
define, because it can be touched and seen, whereas software is hard to visu-
alize. As we speak of software development these days, we also speak about
more serious difficulties than programming problems. The difficulties of
software development have been often labeled with the term "software cri-
sis'. That term is more than a quarter of a century old (Tichy et a. 1993). It
means the fact that, although hardware technology and production have been
evolving rapidly, software producers cannot satisfy the demand for high-
guality software as needed. Typical problems of software development
include development cost overruns, delays in delivery, and errors in deliv-

ered software products.’

Despite the difficulties, computers and different kinds of software systems
have become enormously popular in today's society. During the first decades
of computers they were used for pure mathematical and commercial com-
puting purposes, but nowadays computers control, for instance, air traffic,
nuclear power plants, and electronic equipment such as televisions and por-
table phones. It is possible that our society utilizes computers and software
to such an extent that it could not function without them any more. As com-
puters have become popular, the number of people who develop software
has grown equally. There are hundreds of thousands, if not millions, of soft-
ware developers working in the industry today. It is quite a difference, if we
think that fifty years ago there were only Alan Turing and other clever math-
ematicians. Alan Turing did predict that utilization of computers will require
many mathematicians (Hodges 1983), but he probably did not imagine that
the future software devel opers would not identify themselves as mathemati-
cians.

To tackle the problems of software development, the research community
and industry have produced, in addition to many programming languages,
various models for the software development process (e.g. Boehm 1988),
methods to analyze and design software systems (e.g. Ward and Mellor
1985, Page-Jones 1988, Yourdon 1989, Coad and Yourdon 1990, Rumbaugh
et al. 1991, Booch 1991), and many kinds of tools to help software develop-

1. We started this thesis by referring to Alan Turing's classic paper (Turing 1937a) which can
be said to describe one kind of a software system. We cannot help noting aso that the paper seems
to describe areally typical software system as the first version of the paper contained some errors,
which Alan Turing later "patched" with a separate note (Turing 1937b).

With this note we do not want to anyhow neglect the importance of Alan Turing's excellent work,
hisideas, or his contributions to this field. The fact that there were mistakesin his classic paper is,
in our view, one indication about how complex software systems usually are. Even the most capable
brains fail to manage all the complexity.

11

ersin their work. Software development tools are often designed to support
certain development methods. Although software development requires
appropriate methods and tools, it is still work in which humans need to co-
operate and the success of the work depends on human abilities and skills.
For this reason, human factors and psychological aspects of software devel-
opment have been important research topics (Weinberg 1971, Curtis 1984,
Curtis 1985, Hoc et al. 1990).

As the research community is constantly producing new methods and tools
for software development, researchers obviously believe that software
development indeed can be made more efficient and productive. Brooks
(1987), however, has expressed rather pessimistic opinions regarding this
matter. He has argued that software systems are inevitably complex products
which are hard to visualize. Therefore, developing these systemswill remain
adifficult task. Harel (1992), on the other hand, is convinced that by using
graphical visualization technigues the complexity of software systems can
be managed. One problem related to software development methods and
tools is aso that measuring the efficiency of software development is hard.
Fenton (1993) and Fenton et al. (1994) have pointed out that practically none
of the existing software development methods have been proved to be more
efficient than some other particular methods. Potts (1993) has expressed
similar opinions. Glass (1994) has described this situation as the software-
research crisis. Jackson (1994) has said that we do not yet understand the
nature of software development well enough.

It is obviously very difficult to measure the efficiency of software develop-
ment as a whole. Otherwise, to this date, researchers would certainly have
produced more convincing results. Only a few specific aspects of software
development, like the effects of some documentation styles (Curtis 1985),
have been measured. These measurements have usually been carried out out-
side real software development situations. It is possible that measuring the
efficiency of software development methods and tools will remain a hard
task. We have to live with this possibility.

Despite all the difficulties related to software development, we have to con-
tinue seeking new ways to facilitate software development as a human activ-
ity. We have already seen many software-based innovations which help
people in their work or during their leisure time. This thesis assumes that
much more can be done with software and even more clever innovations will
be made, if the nature of software development can be better understood and
if it can be carried out in more organized manner.

12

1.2 SOFTWARE DEVELOPMENT ASA DOCUMENTATION
PROCESS

1.2.1 Source programs and other software documents

In its executable form software is alist of numerical instructions which can
be directly interpreted by a processor. When executable software is gener-
ated using a programming language, a source program is written according
to the rules of the programming language. Then, the source program is trans-
formed into an executable form with a compiler. During the transformation
process, known as compilation, source programs are transformed from a
human-understandabl e form into a machine-executable form. Machine code
is not, in the conventional sense, understandable to humans. Thisis the rea-
son why programming languages have been invented. High-level program-
ming languages free software developers from thinking about machine
instructions or memory locations. Instead, they can concentrate on arith-
metic operations, logical decisions, iterations, etc.

Source programs serve a dual purpose in software development activities.
On the one hand, they are inputs for software development tools (i.e. compil-
ers), and, on the other hand, they are descriptions which are written, read,
and studied by humans. Because of the latter purpose source programs can
be considered as documents. All people working in the field of software
development do not necessarily have this view of source programs. For
instance, Tausworthe (1992) mentions documents and code separately,
although he considers both to be the same type of information products. We
can, however, treat source programs as documents, because they exist to
convey information to people. The importance of the documentary aspect of
source programs has been emphasized by Brooks (1978) and Green (1990).
In his famous book Weinberg (1971) has stressed that programs are objects
which we read and write in order to learn. Also the facts that many software
development organizations have documentation rules for source programs
and software development standards (e.g. 1SO 9000-3 1991, ESA 1991)
require these documentation rules suggest that it isimportant to treat source
programs as documents.

Before source programs are written, a typical software development project
may produce other types of software documents such as requirements
descriptions and various design documents. |If we compare all these docu-
ments, we can find certain similarities between them. To discuss this matter,
let us imagine a situation that a software development project first produces
a requirement description document written in English, then a Structured
Analysis (SA) model of the system (e.g. Yourdon 1989), and finally source
programs written with the C programming language. Examples of the sym-
bols that these software documentation practices employ are listed in Table
1.

13

Table 1. Examples of typical symbolsin software documents.

Document type Symbol Typical symbols
category
Requirements technical | - i =+ ' 2 ()
descriptions written | symbols
in English
a an and the time system
textual must display customer
symbols | message will has output
transmission

data command control
block from during power

- -
Graphical-textual technical / RN
data-flow diagrams symbols I / A\
included in structured I !
analysis and design ; \ /
methods / SN 7

order customer invalid
textud detail invoice orders
symbols ship book Dbooks payment
item purchase

Source programs technical = == I= < > <= >=
written using the C symbols | ¢ i)/ JE]_ i }oss <<
programming lan- int char 1long double
guage. if else do while for

i j k ptr len display
textual msg message number
symbols buff sl1 s2 string

0O 1 2 87 456 999

By studying Table 1 we can see that usually all types of software documen-
tation practices use some sort of textual symbols. In English they are English
words; in data flow diagrams they are names of data flows, transformations,

14

and data stores; in C source programs they are names for various program
elements such as variables, tables, constants, and functions, as well as
English words in comments. Textual symbols are similar in all types of doc-
uments and that makes all documents similar. What makes the difference
between the document types in Table 1 are the technical symbols. In English
texts, technical symbols are the conventional punctuation symbols, while the
structured methods employ graphical symbols such as arrows and circles,
and the C programming language has many special arithmetic and logical
symbols aswell as reserved words.

Although Table 1 isjust an approximation about what kinds of symbols may
appear in software documents, it displays the real fact that various textual
symbols usually exist in every type of software document. On this basis, we
can treat source programs as documents which are comparable with other
documents produced in software development.

1.2.2 Documentsin the development process

Software development activities can be perceived in different ways, depend-
ing on the viewpoint. The fact that so much research effort has been put to
developing various tools for software development suggests that many peo-
ple see software devel opment as a technical process which is largely depen-
dent on the tools used. Perhaps the extreme of this view is to consider
software development organizations as factories which need factory-like
tools (Matsumoto 1987, Cusumano 1989).

We are not claiming that considering software development a technical pro-
cess would be amistake, but there are aso non-technical aspects in software
development. Curtis et al. (1988) have pointed out that software develop-
ment must be treated, at least partly, as a communication and learning pro-
cess. We will favor this view in this thesis. People need to study and
communicate with other people in order to learn. Documents form an impor-
tant basis for communication in software development. By studying docu-
ments people learn as well. As documents are important in communication
and learning, their understandability is an essential factor for the effective-
ness of software devel opment.

When considering software development as a learning and communication
process we can see it as a documentation process. The documentary view of
software devel opment can be characterized as follows:

. Emerging documents are an indication that software devel opers com-
municate and learn in their work.

e Asthedevelopment work proceeds, it produces more and more elab-
orate documents describing the software system being devel oped.

15

e The final stage of software development must result in documents
from which the executable form of software can be transformed. We
call these documents transformable. Regardless of what documents
have been produced earlier, transformable documents must be pro-
duced in every software development project. Transformable docu-
ments are usually source programs.

e Software development is completed when correct transformable doc-
uments (e.g. source programs) have been created.

e The efficiency of software development depends on how quickly the
developers can produce correct documents. The capability of produc-
ing correct documents is constrained by the learning abilities of the
developers.

The documentary view isthe basis of thisthesis. A similar approach to soft-
ware development has been taken by Welsh and Han (1994). This view has
been described in the context of document classification by Laitinen (1992).
Parnas and Clements (1986) have stressed the importance of correct docu-
mentation in software devel opment.

In this thesis, we assume that software development always produces source
programs as final documents. Because software development practices
change rather slowly (Raghavan and Chand 1989), this form of software
development will most likely remain aliving practice for along time. How-
ever, we must mention that there are software development tools which gen-
erate source programs automatically (e.g. ReaGeniX 1994). When these
tools are utilized, software developers write descriptions for the program
generator which then produces source programs according to the descrip-
tions. In these cases, the final documents of software development are the
input descriptions for the generator.

We can identify the following advantages of having the documentation-ori-
ented view of software development:

e Studying the software development process is ssimpler when we con-
centrate only on documents. We do not have to worry about the exe-
cutable machine code, because that can be regarded as a by-product
which can always be generated in the development environment
when we have the correct documents available.

e Software development can always be treated in the same way regard-
less of which development methods or tools are used. We can assume
that the development methods and tools produce some sort of docu-
ments.

16

e The documentary view of software development is valid with all
development models (e.g. the waterfall and spiral models (Boehm
1988)). There are concerns that software development cannot be
divided into clearly distinguishable phases in practice (Swartout and
Balzer 1982). By concentrating on the documentary outputs of the
development process, we can live with the possibility that the phases
of software development would always be intertwined in reality.

1.2.3 Documentsvs. knowledge

Software developers need to use knowledge from various domains in their
work. For this reason we have to specify how knowledge relates to our doc-
umentation-oriented approach. The concept of knowledge domain has been
popular in research related to software reusability (Seppanen 1990, Prieto-
Diaz and Arango 1991). Theidea of knowledge domain is in harmony with
the approach of considering software devel opment a documentation process.
Software development is a process during which the developers learn and
integrate knowledge from different domains and incorporate the knowledge
they consider necessary into different types of software documents. A simi-
lar view of software development has been proposed by Tausworthe (1992)
who suggests that people develop software by producing and interacting
with information. Program understanding has also been modeled as a pro-
cess in which software developers use knowledge from various domains
(Brooks 1978, Brooks 1983).

As knowledge is an abstract concept which is difficult to measure in exact
guantities, it is also hard to give an exact definition for the concept of a
knowledge domain. Knowledge can be regarded as existing in peoples
minds (Suitiala 1993), whereas different forms of information (e.g. speech,
gestures, and all kinds of written documents) can be regarded as representa-
tions of the knowledge in some peoples minds. By a knowledge domain we
mean knowledge related to particular objects or phenomenain the world. In
software devel opment, a knowledge domain can be, for instance, knowledge
related to a certain communications chip or knowledge of a particular pro-
gramming language. In order to be able to write programs, one needs to pos-
sess knowledge of at least one programming language domain. A person
who writes, for example, a program that controls a communications chip,
has to integrate knowledge from, at least, two domains. the communications
chip domain and a programming language domain. The resulting source pro-
gram isinformation that represents at least these two knowledge domains.

Figure 1 illustrates the integration of different knowledge domains in soft-
ware development. On the left side of the figure various knowledge domains
are represented. From these domains information is extracted and trans-
formed into different kinds of software documents shown on the right side of
the figure. In order to construct different types of software documents, we

17

need domains for knowledge representation, which areillustrated in the mid-
dle of thefigure.

According to Figure 1, there is no exact relation between documents and
knowledge domains. What kind of knowledge a document represents
depends on the writer of the document. However, high-level documents (e.g.
requirements descriptions) usually represent fewer knowledge domains than
low-level documents (e.g. source programs). High-level documents do not
deal with implementation details. Therefore, they do not have to represent
the knowledge of implementation domains (e.g. programming languages or
communications chips).

1.2.4 Documentsin software maintenance

Potts (1993), for instance, has noted that the border between software devel-
opment and maintenance is vague. People start speaking about software
maintenance when a software system is being modified after it has been
delivered to customers. However, if an error needs to be corrected in a soft-
ware system, the work to be done is in most cases the same regardless to
whether it is done before or shortly after the delivery of the system. When a
system is modified arather long time after its delivery, the situation is differ-
ent, because the original developers of the system may not be available.

Bennett et al. (1991) discuss four different types of software maintenance:
(1) corrective maintenance means correcting evident errors in a software
system; (2) perfective maintenance aims at developing new features for an
existing system; (3) adaptive maintenance is being done when a software
system is modified to comply with an external interface (e.g. different oper-
ating system); and (4) preventive maintenance means that an existing system
is modified to make it more maintainable, i.e., to make it more amenable to
future maintenance activities.

Any of the maintenance types listed above requires that software maintain-
ers need to study and understand software documents. A common problem
in software maintenance is that maintainers cannot be sure whether all soft-
ware documents are up to date. For this reason, source programs are often
the only reliable documents for industrial software maintainers (Bennett et
al. 1991, Suitiala 1993). Although comment lines in source programs may
not always be up to date, the actual source code lines must be correct
because the machine code is generated from them.

18

sweiboid
92In0S

PPON
enpxeL
-eoIydeID

HL

uonduosaQg
sawalinbey
USNILIM

wos/As aremyjos e
Buiqiosap sjuswindoq

{

\
4

=g
&
e

"Juswdo pABp 8.1eM1Jos Ul Su reuuop abpa jMmouy| Jo uoireabaiu| T ainbi4

C_owpuesoy >

9]A1s Huiwwesboid srelidosddy

sewa e welboid 10} saweN

xejuAs afenbue | Bu wweboid

Joyps eoiydel
91/1s Buive.p arendoiddy

SIUBWISP [BPOW IO} SSWeN

uolelou eolydelo

wials/s Bussaoold 1x9 1

9A1s Bunum are doiddy

spJom ysijbug
Jewwelb ysijbug

uoIreiussa do 1 abpamouy|

JojsurewoQ

0P

0B

j1000101d-0S 9

07089

Buides->01s

abpajmouy| Jo surewop uoirejusws|dwi

pue uolredijdde snolrep

19

1.3 THE IDEA OF NATURAL NAMING

Source programs are important software documents for the following rea
sons.

) If we assume that software is being developed using programming
languages for implementation, source programs need to be written
during software development regardless of what other software docu-
ments are written before them.

e Source programs describe a software system completely and exactly
asit is, because the executable machine code is generated from them.

° Source programs are, for sure, reliable documents for software main-
tainers. (We exclude here the possibility that the machine code has
been patched.)

For these reasons, this thesis focuses primarily on source programs and sec-
ondarily on other software documents. This does not mean that we would
not consider the higher-level documents important. On the contrary, we
agree that the first phases of software development, and therefore the corre-
sponding documents, are crucia for the success of software development
(Jokela 1991). Our primary interest is in source programs, because they are
usually the most complex and the least understandable documents in soft-
ware devel opment.

Figure 2 illustrates two example procedures from a real software system.
Those procedures are written with the PL/M programming language pro-
vided by Intel Corporation. By studying the program text in Figure 2, we can
see that it differs from conventiona writing at least in two ways: the text
contains special short symbols (e.g. "+", ">=", and "=") as well as special
textual symbols (e.g. "NXTBLO", "SEQTBL", and "WLEN2"). At first
sight, the text in Figure 2 appears rather incomprehensible. If we study the
program text in Figure 2 more carefully, we can note that the textual symbols
consist of abbreviations. For instance, the textual symbol "NXTBLO" is
obviously an abbreviation of "NEXT BLOCK". If we compare the text in
Figure 2 to some more conventional texts like newspapers, novels, and the
text in this paragraph, the text in Figure 2 appears to be much less readable
and understandabl e than conventional texts.

The use of different kinds of abbreviations is one factor which makes the
text in Figure 2 differ from conventional texts. Figure 2 is, although the pro-
gram is about ten years old, atypical example of a computer program. Text-
books and research papers as well as real software systems contain similar
programs which are written with many abbreviations. There seem to be no
strict rules about how to write source programs. We say that the program in
Figure 2 is correct because it works and it can be successfully compiled. It is

20

not usually considered an error in writing if a program contains strangely
written words such as"NXTBLQO". In contrast, the correctness of texts writ-
ten in English can be judged in terms of the spelling rules and grammar of
English. Having these rulesin mind, we are able to quickly perceive the tini-

est spelling mistakes when reading, for example, a newspaper.*

The use of abbreviations in source programs and other software documents
will be our concern in this thesis. Abbreviations harm the readability and
understandability of source programs. Figure 3 shows another program
example in which abbreviations are not so widely used. We claim that the
text in Figure 3 is more understandable than the text in Figure 2 because
abbreviations have been avoided in Figure 3.

The textual symbols of source programs are called names. For this reason,
we use the term "natural naming” to refer to the idea of avoiding abbrevia-
tions. The word "natural” is used to emphasize that instead of abbreviations
we should use names that consist of natural words. Giving an accurate defi-
nition for natural naming is difficult, because the term "natural word" is
somewhat inaccurate. New words constantly enter natural languages
(Fromkin and Rodman 1988) and even some abbreviations belong to natural
languages. For instance, the abbreviations "MAC" and "IDU" are used in a
comment and in some names in Figure 3, because these abbreviations are
generally used termsin the application domain of the program in Figure 3.

By using natural names in source programs we aim at increasing program
understandability, which in turn facilitates software development and main-
tenance. Having natural words in source programs brings these documents
terminologically closer to other types of software documents such as written
English texts and graphical-textual models. Natural names in source pro-
grams should thus make the entire software documentation simpler.

1. If this paragraph were written in the same way as source programs usually are, the text
could look like the following:

The use of diff knds of abbr is one factor which mks the txt in Fig 2 diff from conv txts. Fig 2is,
althg the progr is abt ten yrsold, atypcal exmpl of acomp progr. Txtbks and rsrch papr as well as
softw syst cntn smir progrs whch are writn with many abbr. There seemsto be no stct rules abt how
to writ src progrs. We say that the progr in Fig 2 is corr bseit wrk and it can be succful comp. Itis
no uslly consrd an err in writ if aprogr cont stngly writ wrd such as"NXTBLO". In contr, the
cornss of txt writ in Engl can be jdgd in trms of the spellg rules and gramm of Engl. Having these
rulesin mnd, we are able to gckly percve the tniest spling mstks when readng, for exmpl, a npaper.

21

SEJECT

/***/

/* */
/* NXTBLO : READ NEXT BLOCK */
/* */

/***/

NXTBLO : PROCEDURE (FILE) ;
DECLARE FILE BYTE;

CALL BUBWRI (SEQTBL (FILE) . LNRBLO, .BWORKO) ;
IF SEQTBL(FILE) .LNRBLO = SEQTBL(FILE) .LSTBLO
THEN SEQTBL (FILE) .LNRBLO = SEQTBL(FILE) .FSTBLO;

ELSE SEQTBL (FILE) .LNRBLO = SEQTBL(FILE) .LNRBLO + 1;

CALL BUBRED (SEQTBL (FILE) . LNRBLO, .BWORKO) ;

END NXTBLO;

SEJECT

/¢ ke ko ok ko ok ok kK ok ok ok ok ok ok ko ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok Kk kK ok kR kK K k[
/* */
/* WRIMOV : MOVE DATA FROM WORK BUFFER TO THE BUBBLE BUFFER */
/* */

/¢ e ko ok ko ok ok kK ok ok ok ok ok ok Kk ok ok ok ko ok ok ok kK o ok ok ok ko ok ok kK ok ok Kk kR kK K k[
WRIMOV : PROCEDURE (FILE,WRILEN, BUFPOI) ;
DECLARE FILE BYTE,WRILEN ADDRESS,BUFPOI ADDRESS,

BUFFER BASED BUFPOI (1) BYTE, WLEN1 ADDRESS,WLEN2 ADDRESS;

IF (WRILEN + SEQTBL(FILE).LNRBYT) >= BLOLEN
THEN DO;
WLEN1 = BLOLEN - SEQTBL(FILE) .LNRBYT;
WLEN2 = WRILEN - WLEN1;
IF WLEN1 > O
THEN CALL ZMOVE (.BWORKO (SEQTBL (FILE) . LNRBYT) , .BUFFER, WLEN1) ;
CALL NXTBLO (FILE);
IF WLEN2 > O
THEN CALL ZMOVE (.BWORKO, .BUFFER (WLEN1) , WLEN2) ;

END;

ELSE CALL ZMOVE (.BWORKO (SEQTBL (FILE) .LNRBYT) , .BUFFER, WRILEN) ;
END WRIMOV;

Figure 2. Examples of procedures of a real software system.!

1. Thisprogramis printed here with the permission of itswriter. We use this program as
an example in which abbreviated names are used. We are not criticizing the quality of the
program or the writer of the program. This program has been proved to work reliably in
real environments.

22

GENERAL_MAC_GENERATOR: PROCEDURE (MESSAGE POINTER,

MESSAGE_LENGTH_WORD) BYTE PUBLIC;

/* This procedure shall be called before the message is sent to bank

with the send message to bank - program.

First the procedure constructs a message and sends it to the IDU.

The IDU responds with a message which contains the MAC.

The MAC is joined to the message to be sent to the bank host.

*/
DECLARE MESSAGE_POINTER POINTER, MESSAGE LENGTH_WORD WORD;
DECLARE RETURN_CODE BYTE;
DECLARE MESSAGE_INDEX BYTE, BINARY MESSAGE_ TYPE WORD;
DECLARE READY BYTE;
DECLARE MESSAGE_DATA BASED MESSAGE_POINTER (1) BYTE;
DECLARE NUMBER_OF ITEMS TO COMPRESS BYTE;
DECLARE MAC_CALCULATION_STATUS BYTE;
DECLARE IDU_MESSAGE TRAILER POINTER POINTER ;

DECLARE IDU_MESSAGE TRAILER BASED IDU MESSAGE TRAILER POINTER

STRUCTURE (

MESSAGE_SEPARATOR BYTE,

NUMBER_OF ITEMS TO COMPRESS BYTE,
START POSITION OF FIRST ITEM (3) BYTE,
LENGTH _OF FIRST ITEM (3) BYTE,
START POSITION OF SECOND ITEM (3) BYTE,
LENGTH_OF SECOND_ITEM (3) BYTE,

MESSAGE_TERMINATOR

BYTE) ;

Figure 3. Variables declared using natural names.

The main reason why natural naming has not traditionally been used is that
the early compilers of programming languages had restrictions on name
lengths. Because programmers could use only names that did not exceed a
certain number of characters (e.g. six charactersin Fortran), they had to use
abbreviations. During the early days of computing, there was a need to
abbreviate all data that were stored in the memories of computers (Bourne
and Ford 1961), because memories were expensive and their capacity was
small. By putting limits on name lengths, the designers of the early program-
ming languages could save the memory needed in compilation. These rea-
sons for using abbreviations are no longer valid because memory technology

is not expensive today and longer names are now permitted.

23

Another reason for using abbreviations in source programs is probably that
programming has its roots in mathematics. Fortran -- the first high-level pro-
gramming language -- was designed mainly for mathematical calculations
(MacLennan 1983). Thefirst ideas of computing were presented by applying
them to a mathematical problem (Turing 1937a). The first computers were
used mainly to solve mathematical problems (Hodges 1983). Because math-
ematicians have traditionally used short symbols, they took this tradition to
computer programming as well.

We see no reason not to try to break the tradition of using abbreviations. This
tradition may be so strong partly because it is often hard to invent descrip-
tive names for a source program, and because it takes more time to type
longer names. It is possible that there are programs (e.g. in mathematical
software) in which abbreviations are useful. During the time when people
started the tradition of using abbreviationsin source programs, software sys-
tems were much smaller than today. Considering that the source programs of
large software systems may contain more than one thousand different names,
it cannot be a bad idea to try to distinguish these names as clearly as possi-
ble.

1.4 OUTLINE OF THE THESIS

In the second chapter of this thesis we discuss the structure of source pro-
grams more thoroughly. The term programming style is used to denote vari-
ous factors which affect the understandability of source programs. We show
that naming is one of the most important programming style factors. We also
justify the use of natural naming.

In the third chapter we present the research problem of thisthesis. Basing on
the presented problem, appropriate research activities and methods will be
defined. The methodological approach will be justified.

Chapter Four discusses related work. We focus on other approaches to
increase understandability and maintainability of source programs. Because
naming is using a natural language, we will discuss other scientific fields
such as linguistics and philosophy.

The fifth chapter is an introduction to the previously-published papers which
are included in this thesis. Each paper is a description of one research activ-
ity defined in the third chapter.

In the concluding sixth chapter, we evaluate the results of thiswork, and dis-
cuss possibilities for further work.

24

2 PROGRAMMING AND NAMING STYLES
2.1 THE CONCEPT OF PROGRAMMING STYLE

When we consider source programs in apurely technical sense, i.e. from the
viewpoint of compilation, they can be treated as lists of coded characters
which are processed by a compiler (Aho et al. 1986). Different characters
and character combinations have a clearly defined meaning to the compiler.
For example, in the case of the C programming language, the equal sign "="
operator to compare equality. Because compilers set only technical rules for
writing source programs, programs can be written in many ways which are
al equally acceptable in the technical sense. Theissue here, however, is that
different ways of writing source programs are not equally readable and
understandable to humans.

The factors that affect the readability and understandability of source pro-
grams are denoted by the concept of programming style. Oman and Cook
(1991) classify programming style factors into the following major catego-
ries:

e Genera programming practices, defined as rules and guidelines per-
taining to the programming process that directly affect the style of the
software product.

e Typographic style, defined as style characteristics affecting only the
typographic layout and commenting of source code.

e Control structure style, defined as style characteristics pertaining to
the choice and use of control flow constructs, the manner in which the
program or system is decomposed into algorithms, and the method in
which the agorithms are implemented. Control structure style
excludes data structure aspects.

. Information structure style, defined as style characteristics pertaining
to the choice and use of data structure and data flow techniques, i.e.,
to the manner in which information is manipulated throughout the
program or system.

As shown in Figure 4, the major style categories can be divided further into
macro and micro style concerns. Macro concerns are those pertaining to a set
of source program modules of a system, while micro concerns are those rel-
ative to a single program module or statement. Programming style can be
considered analogous to "writing style" which means that programming
style researchers are interested in the written outputs of the programming
process, the source programs, and not in the programming process itself.

25

speLen |

jo ueds

SuUoNoLIsAl |
abiesn

sanbiuyoe)
uonezieniu|

S2IN0NIE
10077

oIW

(T66T 00D pue uewQ) ajAis Buiuwre bo.id 1o} \f_oc.oxﬁ Vv 72inbi4

SwsILeyoaW _|
ndino

U010 JUNWILIOD _|
a|npowLe|

S2N10NJIS |
nduj

SaInjonJis -
eEp [eoIo

new

alfis8inOnis

snpnIs

|0.4U02 JO |
ueds 7 BunsaN
Bui|puey
uondsoxe % | uolr nsdeaus |
MO} [043U0D) 9 8SNBJ 9INPOIN
Buyoue.q
paJn1oNIIS | Buidnoo
-uou joasn a|npo
SIONASU0D | Bunsau _|
painon.ss jossn 9INPOIN
Ape|dwod | uonsodwodsp |
9poD 3[NPON
o1W 1oew

uoienpund
‘9520 ‘Sjoquifs |
E1090s Joas

SoIsleIRRYD |
BureN

(zuoy % 1en) |
Buioeds

Bunuswiwiod
a|npowe.u|

Bunreuwo)
LBUREIS

001w

SUOJUBAUOD
uorenound _|
2 S|oqWAS

SUONUBAUOD _|
BueN

uoeedss _|
3INpoN

Bunuswiwod |
feuBul @ QOO

Bunrew.oy
weiboud |eReAO

Joew

9k

SUJB2U09 |
oueuaIUR A

saooeud |
‘Bncpp pue 13 1|

SUBUCO |
abienbue]

sanbiuyoe) |
ubssa

sao10e.d
-~ ERwWO

26

Although different programming styles affect the understandability of
source programs, understandability is hard to measure in exact quantities. If
a person tries to read and understand a source program, his or her back-
ground determines how well he or sheis able to succeed in this task. Under-
standability is also a very subjective matter: what is considered easily
understandable by one person may be poorly understandable for another.
Typically, educational as well as professional experience affect how well a
person can understand a particular source program. We can say that special-
ized people with appropriate education or experience can understand com-
puter programs, but we find it difficult to judge how well a particular
specialized person can understand a particular source program. Due to the
obvious abstractness of the concept "understandability” we will not attempt
to define or measure it explicitly. Rather, we will study the appearance of
example source programs and discuss their visual understandability.

To demonstrate that a source program may have forms which are different in
terms of understandability and the same in terms of functionality, three pro-
gram examples are illustrated in Figure 5. A compiler produces identically
functioning outputs from any of these program versions. However, the pro-
gram versions visually appear quite different and they may evoke different
kinds of intuitions about their functionality when an observer studies them.
To a literate observer, the program version (@) in Figure 5 contains familiar
characters and numbers, but the characters form no familiar words, whereas
the program version (b) contain strings of characters that at least resemble
English words. The program version (c) incorporates many English words
which, if the observer is familiar with computer programming, should
enable him or her to learn quite much about the program's functionality and
purpose. Figure 6 shows more functionally equivalent versions of the same
program asis used in Figure 5. In Figure 6(a) the program contains exactly
the same English words as the program in Figure 5(c), but the visual appear-
ance is different because of different organization of English words and spe-
cia characters. The program in Figure 6(b) is a commented version of the
program in Figure 5(b) and Figure 6(c) presents the program from Figure
5(b) in avisually different form. From these examples we see that thereis a
great variety of possibilities how we can organize a program.

We thus conclude that if there are two versions of a functionally equivalent
source program and these versions have different visual appearance, it is
very likely that the versions evoke different processes in an observer's mind
and the observer understands the two versions in somewhat different man-
ner. The understandability of the programs can then be different, and one
version of a program can be more understandabl e than another. Experiments
with human subjects support this (Shneiderman 1980, Curtis 1985).

27

#define Cco001 13 #define CNUMMAX 13
#define C0002 0 #define VALID 0
#define C0003 1 #define NVALID 1
Y i */ K m e e e e */
f0001 (char s0001 [], isvalid (char cnumbr [],
int *i0001) int *rcode)
K m e */ K e e e oo */
{ {
int i0002, i0003 ; int i, len ;
*10001 = C0002 ; *rcode = VALID ;
i0003 = strlen (s0001) ; len = strlen (cnumbr) ;
if (10003 > CO0001) if (len > CNUMMAX)
*10001 = CO0003 ; *rcode = NVALID ;
} }
else else
{ {
for (10002 = 0; 10002<i0003; i0002++) for (i=0 ; i<len ; i++)
{ {
if((s0001[10002] < '0') || if ((cnumbr([i] < '0') |[]
(s0001[i0002] > '9')) (cnumbr[il > '9'))
{
*10001 = C0003 ; *rcode = NVALID ;
} }
} }
} }
} }
Figure5 (a) Figure5 (b)
#define MAXIMUM_CUSTOMER_NUMBER_LENGTH 13
#define CUSTOMER NUMBER IS VALID 0
#define CUSTOMER NUMBER_IS_NOT VALID 1
YA e i */
check customer_number_validity (char possibly valid customer_number [],
int *success_code)
A e et */
{
int customer number_ index, customer_number_ length ;
*success_code = CUSTOMER_NUMBER_IS_VALID ;
customer_number_length = strlen (possibly valid_customer_ number) ;
if (customer_number length > MAXIMUM_CUSTOMER_NUMBER_LENGTH)
{
*success_code = CUSTOMER_NUMBER_IS_NOT VALID ;
}
else
{
for (customer_number_index = 0 ;
customer_number_index < customer_number_ length ;
customer_number_index ++)
{
if ((possibly valid_customer_ number[customer number_ index] < '0') ||
(possibly valid_customer_number[customer_ number index] > '9'))
{
*success_code = CUSTOMER_NUMBER IS _NOT_VALID ;
}
}
}
}

Figure5 (c)

Figure 5. Functionally equivalent versions of the same program.

28

#define MAXIMUM_CUSTOMER_NUMBER_LENGTH 13

#define CUSTOMER_NUMBER_IS_VALID 0

#define CUSTOMER_NUMBER_IS NOT_VALID 1
check_customer_number_validity (

char possibly valid_customer_number[], int*success_code)

{int customer_number_ index, customer number length;
*success_code=CUSTOMER_NUMBER_IS_VALID;customer_number_ length
=strlen(possibly valid_customer_ number) ;if (customer_number_length
S>MAXIMUM CUSTOMER NUMBER LENGTH) {*success_code=CUSTOMER NUMBER_IS NOT VALID;
}else{for (customer number index=0;customer number_ index
<customer_number_length;customer_number_index++){if((

possibly valid_customer_number [customer number index]<'0'

)| | (possibly valid_customer_number [customer number index]

>'9')) {*success_code=CUSTOMER_NUMBER_IS_NOT VALID;}}}}

Figure 6 (a)

/* A program to check the validity of the customer number. */

#define CNUMMAX 13 /* Maximum length of customer numer */

#define VALID 0 /* Code for valid customer number */
#define NVALID 1 /* Code for invalid customer number */
/* ,, */
isvalid_ (char cnumbr [], /* Customer number string */
int *rcode) /* Return code for caller */

/* ,,, */
{

int i ; /* 1Index to access the customer number */

int len ; /* customer number length */

rcode = VALID ; / Assume that customer number is valid. */

len = strlen (cnumbr) ; /* Get the lenght of string. */

if (len > CNUMMAX)

{

rcode = NVALID ; / String too long. Not valid. */
}
else
{
for (i=0 ; i<len ; i++)
{
if ((cnumbr[il < '0') || /* Are there just numerical */
(cnumbr([1] > '9')) /* digits in the string ? */
{
rcode = NVALID ; / No. */

}

Figure 6 (b)

#define CNUMMAX 13

#define VALID 0

#define NVALID 1

isvalid__ (char cnumbr [],int *rcode){int i,len; *rcode=VALID;len
=strlen(cnumbr) ;if (len>CNUMMAX) { *rcode=NVALID; }else{for (i=0;
i<len;i++) {if ((cnumbr[il<'0"') || (cnumbr[i]>'9"')) {*rcode=NVALID; }}}}

Figure 6 (c)

Figure 6. More equivalent versions of the programin Figure 5.

29

#define 13 CNUMMAX
#define 0 VALID

#define 1 NVALID
(char [1, isvalid cnumbr
int *) rcode
{
int , ; i len
= ; rcode VALID
= strlen () len cnumbr
if (>) len CNUMMAX
{
= ; rcode NVALID

for (=0 ; < ;o o++) i i len i

I cnumbr i
)) cnumbr i

= ; rcode NVALID

Figure 7. Names separated from a program.

Considering that there are so many programming style factors that may
affect the understandability of programs, we are confronted with the ques-
tion: what is the programming style factor that bears the most significant
correspondence with understandability? Because understandability is such a
subjective and largely unmeasurable concept, and because different pro-
gramming style factors may not be completely separable, we will not
attempt to give ajustified answer to that question. Rather, it is assumed that
naming is one of the most important programming style factors, and, there-
fore, we focus our attention on it. The examples of differently written pro-
gramsin Figures 5 and 6 illustrate the importance of naming style.

As shown in Figure 5, different naming styles greatly affect the physical
appearance of the program. There is also some empirical evidence that nam-
ing may contribute most to the understandability of programs. Gellenbeck
and Cook (1991) have found that the meaningfulness of names in programs
affect the understandability more than such typographic signals as different
fontsfor different kinds of program elements. The importance of naming can
be perceived rather well in an intuitive observation. In Figure 7 the program
version (b) from Figure 5 is shown in two different forms. In the left-hand
part the names have been removed from the program and the right-hand part
presents only the names of the program in their relative positions. We can
easily perceive that there is not much "meaning” left in a typical program

30

when its names are taken away. On the other hand, we see that neither do the
names alone make much sense, although they display some details of the
functionality of the program.

2.2 DIFFERENT NAMING STYLES

Names in source programs are strings of letters and numbers which are
uniquely identified by the compiler. Some compilers make a distinction
between uppercase and lowercase letters while others do not. Usualy, a
name must start with a letter, but the subsequent characters may be also
numbers. Many compilers allow aso underscore characters " " in names.
Underscores can be used as word separators when a name consists of more
than one word.

Naming in programming means giving names to different source program
elements such as variables, constants, tables, functions, and procedures. Dif-
ferent programming languages may have different kinds of elements which
need names. As shown in Figure 4, naming is part of the typographic style.
Naming does not deal with the functionality of programs, since the typo-
graphic style only dictates how a source program appears to an observer.
Figure 4 makes a distinction between the macro typographic concern "nam-
ing conventions' and the micro typographic concern "naming characteris-
tics'. Naming characteristics deal with issues such as should we use an
underscore" " or a capital letter to separate words of a single name. Because
naming characteristics play a minor role in making the names understand-
able, we are mainly interested in naming conventions.

As compilers set only technical constraints for naming, a programmer is free
to use many kinds of names. Figure 5 above shows some possibilities:

e Thenamesin Figure 5(a) are made of a single letter which identifies
the type of the name. The names are made unique by adding sequen-
tially different numbers after the first letter.

. Most of the names in Figure 5(b) are abbreviations of one or more
English words. The name "VALID" is a single English word. The

name "i", which is used as an index variable, is a symbol commonly
used in mathematics.

) Figure 5(c) contains natural names which consist of several natural
English words.

Intuitively, natural names such as the ones in Figure 5(c) appear to be the
most understandable. Therefore we will study this naming approach. Natural
names can also be formed in different ways. Figure 8 illustrates two different
ways for constructing natural names:

31

e Thenamesin Figure 8(a) are about the same as the names in Figure
5(c), but they are written in Dutch. The reader should be competent in
this language in order to properly understand the program in Figure
8(a).

) Figure 8(b) has natural names written in English, but these names are
arbitrarily chosen expressions which do not relate rationally either to
each other or to the functionality of the program.

Basing on the examples in Figure 8, we can clarify the concept of natural
naming with two amendments:

° When natural names are used, a decision must be made about which
natural language to use as the naming language. English is usually a
good basis for naming, because programs usually contain other items,
such as reserved words, which are English words.

) Natural names used in source programs should describe the function-
ality of the program.

Names in source programs can denote various matters depending on the pro-
gramming language in question. In procedural programming, names are
needed to refer to certain locations in the memory of a computer (e.g. the
name of a variable refers to the memory location reserved for that variable
and the name of a procedure refers to the memory location in which the
machine code of the procedure starts). The terms "symbol”, "identifier”, and
"label" are sometimes used instead of the term "name" in the literature. For
instance, the table into which a compiler collects all the names found in a

source program is called a"symbol table" (Aho et a. 1986).

When the meaningfulness and understandability of names are discussed in
the literature, the term "mnemonic name" is often used (e.g. Sheppard et al.
1979, Shneiderman 1980). Mnemonicity should help memory (Webster's
1989), but the mnemonicity of namesis hard to define explicitly. Obviously
names like those in Figure 5(a) cannot be considered mnemonic. When
Sheppard et al. (1979) wanted to use hon-mnemonic names in psychological
experiments, they made them of two randomly chosen characters. On the
other hand, abbreviations consisting of a few letters can be mnemonic. For
instance, three-letter instructions of some assembler languages (e.g. "MOV",
"LDA", and "STA") are called mnemonics (Intel 1979). To make a distinc-
tion between mnemonic and natura names, we can conclude that mnemo-
nicity of names is a different concept than naturalness of names, since
natural names have to be formed using natural words.

32

#define GROOTSTE_CLIENT NUMMER_ LENGTE 13

#define CLIENT NUMMER_IS_GOED 0

#define CLIENT NUMMER_IS NIET GOED 1

A ettt */
is_client_nummer_goed (char mogelijk_goed_client_nummer [],

int *success_code)

int client_nummer_index, client_nummer_lengte ;
*success_code = CLIENT NUMMER_IS_GOED ;
client_nummer_lengte = strlen (mogelijk goed_client_nummer) ;

if (client_nummer_ lengte > GROOTSTE_CLIENT NUMMER_ LENGTE)

{

*success_code = CLIENT_NUMMER_IS_NIET GOED ;
}
else
{
for (client_nummer_index = 0 ;
client_nummer_index < client_nummer lengte ;
client_nummer_index ++)
{
if ((mogelijk_goed client nummer [client nummer_index] < '0') ||

mogelijk _goed_client_nummer [client_nummer_index] > '9'))

*success_code = CLIENT NUMMER IS _NIET GOED ;

Figure 8(a). Natural names written in Dutch.

#define ALL_WORK NO_PLAY 13

#define BREAD IS HEALTHY 0

#define SMALL_BABIES_SLEEP A_LOT 1

A et e ittt */
are_sundays_really boring (char breakfast_is_an_important_meal [],

int *war_and_peace)

A e et */
{

int michael_ jordan_and_carl_lewis, this_silence_is_ ;

*war_and_peace = BREAD IS HEALTHY ;

this_silence_is_ = strlen (breakfast_is_an_important_meal) ;

if (this_silence_is_ > ALL_WORK_NO_ PLAY)

{
}

else

{

*war_and_peace = SMALL_BABIES_SLEEP_A LOT ;

for (michael_jordan_and carl_lewis = 0 ;
michael jordan_and_carl_lewis < this_silence_is_ ;
michael jordan_and_carl_lewis ++)

if ((breakfast_is_an_important_meal [michael jordan_and carl lewis]<'0') |
(breakfast_is_an_important_meal [michael_ jordan_and_carl_lewis]>'9'))
{

}

*war_and_peace = SMALL_ BABIES_SLEEP_A LOT ;

Figure 8(b). Natural names not referring to the functionality of the program.

33

2.3 JUSTIFYING THE USE OF NATURAL NAMING

In the program examples above we have shown that naming is an important
progranming style factor. Naturally named programs appear to be more
understandable than programs containing abbreviated or completely non-
mnemonic names. The concept of natural naming can thus be defined as fol -
lows:

Natural naming meansthat all kinds of names needed in source
programs should be formed by using, preferably several, natural
words of a natural language so that the grammatical rules of the
used natural language are respected, and the names describe the
functionality of the program.

This definition is somewhat vague because the term "natural word" is vague.
We argue, however, that it is hard to give much more accurate definitions for
natural naming. It is a known linguistic fact that natural languages have
changed during the history and they are changing al the time (Fromkin and
Rodman 1988). Therefore, it is possible that new words and even new gram-
matical rules can be invented, and new meanings can be assigned to existing
natural words. Natural naming is against the use of abbreviations, but itisa
fact that many abbreviations are aready accepted as symbols in our natura
languages. Because it is not always clear what is a known natural word, the
definition of natural naming given above has its limitations.

It is also hard to say when a name is meaningful enough. The definition
above suggests that more than one word should be used to make a name
meaningful, but it is difficult to set an upper limit for the number of words.
For instance, all the following names could represent the same variable:

(1) n
(2) nbytes
(3) bytes

(4) Dbyte count

(5) number of bytes

(6) number of bytes in buffer

(7) number of bytes in reception buffer
(8) current number of bytes in buffer

The names (1) and (2) are not acceptable as natural names, because they do
not consist of natural words. The name (3) is not very descriptive because it
isasingle word. The rest of the names from (4) to (8) can all be considered
natural although they are much different from each other. It depends on the
context in which a name is used and also on the observer's persona taste
which natural name can be considered to be suitably long and meaningful.
Newsted (1979) has pointed out that personal taste affects which names are

34

considered appropriate.

Although the concept of a natural name is somewhat vague, we can justify
this research by the fact that in software documentation it is very common to
use non-natural and abbreviated names which are hard to understand. The
following points can be seen to support the use of natural naming:

Terminology control in software documentation isimportant (Boldyr-
eff et a. 1990). Higher-level software documents (e.g. requirements
descriptions) are usually written using natural words and a natural
language. If source programs also contain natural names, they are ter-
minologically closer to higher-level software documents, and thereby
more understandable. As higher-level software documents are usually
read by other people than software developers (customers, end users,
sales personnel, etc.), we can assume that software developers can
more easily communicate with non-experts when the same terminol-
ogy isused in every software document.

Natural names are commonly used in the graphical-textual descrip-
tions which need to be written when certain software development
methods are used. For instance, the data-flow diagrams shown by
Ward and Mellor (1985) and by Yourdon (1989), and the various
object diagrams shown by Coad and Yourdon (1990) contain names
which consist of natural words. It is possible that the use of natural
names in these diagramsis one reason why they are considered useful
in software development. Figure 9(a) illustrates a typical data-flow
diagram with natural names. The diagram in Figure 9(b) is less typi-
cal and it appears to be less understandable.

Several writers recommend that computer programs should be
described with alanguage close to a natural language before they are
written with a programming language. Caine and Gordon (1975) rec-
ommend the use of structured English which is a language using the
English vocabulary together with a syntax of a structured program-
ming language. Some software development methods (e.g. Page-
Jones 1988, Yourdon 1989) recommend the use of so-called pseudo-
coding, which means describing programs with a language that is
somewhere in between a natural language and a programming lan-
guage. When natural naming is used in programming, source pro-
grams themselves become descriptions which are close to a natural
language.

35

Message data

Decoded message data
Recelived /////////"\\\§§>
message

Remove
protocol
header

decode
megsage data

Encryption
key

Message encryption keys

Figure 9(a). An example of a data-flow diagram

ddata

>

rmsg

remhead decode

key

keys

Figure 9(b). The same diagramwith less infor mative names.

Figure 9. Data-flow diagrams with different naming styles.

e Some researchers have stressed the importance of having specifica
tions of software systems written in a natural language, and they pro-
vide methods to transform the natural language specifications into
more elaborate descriptions (Abbott 1983, Saeki et al. 1989, Yon-
ezaki 1989). Using documents written in pure natural language is thus
seen to be advantageous in software development. If we assume that
specifications are written with natural language, the use of natural
names in source programs should narrow the gap between specifica-
tion and implementation.

e Testswith the users of an interactive text editor suggest that it is eas-
ier to control an interactive system with longer natural commands
than with short abbreviated commands (Ledgard et al. 1980). In many
software tools, natural words in user interfaces are becoming popular.
For instance, in graphical operating systems for personal computers
and workstations, the operating systems are being controlled by using

36

the mouse to select natural language expressions from various menus.
In older operating systems, we need to remember and type short
abbreviated commands on the command line. The use of abbrevia-
tions seems thus to be decreasing in the context of modern graphical
operating systems. This gives us areason to consider reducing the use
of abbreviationsin other contexts as well.

e The use of abbreviations has been criticized in other contexts than
software documentation. Some guides for technical writing warn
against the overuse of abbreviations (Kauranen et al. 1993). Ibrahim
(1989) criticizes acronyms and Logsdon and Logsdon (1986) show
that acronyms neither shorten texts nor make them more readable.

. It is possible to formulate a philosophic-linguistic theory to support
the use of natural naming (Laitinen and Taramaa 1994, Laitinen
1995), although this theory has not (yet) acquired wider acceptance.

Several authors (Weissman 1974, Curtis et al. 1979, Sheppard et al. 1979,
Shneiderman 1980, Teasley 1994) describe experiments in which the effect
of different naming styles, among other programming style factors, has been
tested with human subjects. Students have been the usual subjects in these
experiments in which different groups of people have been asked to study
source programs written with different programming styles. The under-
standability of different versions of source programs has been evaluated by
letting the subjects modify or memorize the programs or by asking them
guestions about the programs.

Although the mentioned experiments have revealed that some programming
style factors affect significantly the understandability of source programs,
the effect of naming is still somewhat obscure. Usualy, the subjects who
have been exposed to programs containing mnemonic or natural names have
had a better performance than the subjects who have studied the same pro-
grams with less clear names. The problem is, however, that the results of the
experiments have not always been statistically significant. It thus seems that
it is hard to measure how different naming styles affect understandability.

Despite the fact that the mentioned experiments have not been able to con-
vincingly prove the usefulness of having mnemonic or natural names in
source programs, our working hypothesis remains that the natural naming
approach is useful in practical work. The mentioned experiments were car-
ried out by using small examples of source programs which were quickly
studied by students. Practical software development work differs substan-
tially from these kinds of experimental arrangements. Industrial software
developers and maintainers study programs which may contain hundreds of
names, they may have to spend days to understand a certain problem in a
software system, and they may have to study and modify the same programs

37

severa times during alonger time period. It is likely that natural names are
helpful in real software development situations. Teasley (1994) also points
out that it is possible that such a programming style factor as naming could
have a greater impact in practical software development work than it hasin
classroom experiments.

The reason why controlled understandability tests have been carried out only
in classrooms is obvioudly that it is not easy to do controlled experimenta-
tion with staff employed in practical software development projects. Theo-
retically, we could let two groups of software developers build the same
software system using different documentation practices (e.g. using abbrevi-
ations vs. natural names), and then we could compare the performance of the
groups by observing which group get the job done in shortest time. How-
ever, if we had only two groups to compare, it would be impossible to get
statistically significant results. For statistical reasons, we should have many
more groups performing the same job. It is hard to imagine that somebody
could provide funds for this kind of experimentation where many groups of

expert people would be doing the same real-size software projects.’

Because controlled experimentation with practical software development
projects may be infeasible, we do not aim to unambiguously prove that the
use of natural naming really makes software development and maintenance
more effective. As explained above, there are sufficient grounds to believe
that natural naming has the potential of easing the cognitive tasks of soft-
ware devel opers.

1. We have actually done this kind of experimentation in small scale with non-experts. Dur-
ing thefall 1990, we organized a test with two groups of students. Both four-member groups had to
build the same software system. These software devel opment projects were part of a course given at
the University of Oulu in Finland. We gave a course on natural naming to one student group and
told nothing about the subject to the members of the other group. It turned out that the student group
which was taught and used natural naming in their work finished their software project earlier than
the other group. However, because we had only two samples of performance, we cannot be sure
whether the use of natural naming was the only reason why the first group was more successful. It
is possible that the members of the better group were simply more clever and co-operative than the
people in the other group.

38

3 RESEARCH PROBLEM

3.1 PROBLEM DEFINITION AND RESEARCH ACTIVITIES

We suppose in thisthesis that by the use of natural naming, source programs
and other software documents can be made more understandable, which
facilitates software development and maintenance. The poor under-
standability of source programs is thus the underlying problem considered in
this work. Poor understandability is a non-desirable aspect. Therefore, it can
be considered as a problem. Thinking this way, natural naming can be
regarded as one solution to alleviate the problem of poor understandability.
It can also be seen as ameans of eliminating the risks of misunderstanding.

The understandability of source programs and other software documents is
important when we consider software development as a documentation pro-
cess. It seems that the importance of having understandable documents is
increasing as software quality systems require that software documents need
to be read and inspected formally (Ackerman et al. 1989, 1SO 9000-3 1991).
Understandability of documents is perhaps the most important in software
maintenance which comprises a sizeable proportion of the entire software
business (Parikh and Zvegintzov 1983, CSTB Workshop Report 1990,
AMES 1993, Taramaa and Oivo 1993).

Aswe explained in the previous chapter, it may be quite hard to empirically
prove that using natural naming is advantageous in every application. Still
we have sufficient reasons to believe that this naming approach is useful in
practice. Moreover, even if we could empirically show that it is usualy
advantageous to use natural naming, we would not have much practical use
of this knowledge as we had little experience of using it in practice. For this
reason, we consider that it is more important to gain practical experiencein
the use of natural naming, rather than trying unambiguously to prove its
advantage. We thus define our research problem as follows:

How can we facilitate the use of natural namingin
software devel opment and maintenance?

The purpose of this thesis is to find means for making natural naming more
attractive and easy-to-use for people doing practical software development
and maintenance work. We define the following research activities to pro-
duce solutions to the research problem defined above:

39

(al) Because the basic idea of natural naming is rather simple (i.e. avoid-
ing abbreviations), produce more detailed principles for using natural
naming in source programs.

(a2) Natural names used in source programs should be similar to textual
expressions used in other software documents. For this reason, for-
mulate a method which enables the creation of names at an early
stage of the development process, in such a way that the names used
in programs correspond with the names and textual expressions in
other types of software documents (e.g. requirement descriptions).

(a3) Because the habit of using abbreviations is the most common in
source programs, and because existing programming languages have
not been specifically designed for the use of natural names, investi-
gate how we could redesign programming languages to be more suit-
able for the use of natural naming.

(ad4) Because hard-to-understand source programs pose a difficult problem
for software maintainers, investigate how already abbreviated names
could be replaced with natural ones in existing source programs
which need maintenance.

(a5) To encourage the use of natural naming, seek to produce more practi-
cal evidence of the usefulness of natural naming.

Natural naming can be applied by using existing software development prac-
tices and tools. The only requirements for using natural naming in program-
ming are that the compiler in use must be able to distinguish relatively long
(e.g. at least 30 characters in length) names, and that separate words in a
name be distinguishable. Because using natural naming does not require any
especialy modern tools, we will concentrate in commonly used software
development practices in this work. Natural naming will be studied mostly
in the context of procedural programming. Although object-oriented pro-
gramming is gaining popularity, we can assume that procedural program-
ming will still remain important. Because we are also interested in software
maintenance, it is relevant to concentrate on procedural programs, which are
usually the ones being maintai ned.

At least theoretically, any written natural language can be exploited as the
basis for natural naming. Because there are about 6000 different spoken lan-
guages in the world (Fromkin and Rodman 1988), there are hundreds if not
thousands of natural languages for which a writing system has been
invented. As it would be rather hard to study all written languages as poten-
tial software documentation languages, this study will limit its concern to
English, which is probably the most common natural language used in soft-
ware documentation.

40

3.2 RESEARCH METHODS

This work can be characterized as constructive research which involves
studying existing source programs and other software documents and inter-
acting with people who are doing practical software development work. We
will justify this research approach more profoundly in the subsequent sec-
tion. For each research activity from (al) to (ab) defined in the previous sec-
tion, we describe a set of steps to be followed. These steps form the methods
for the research activities. Although the research described in this thesis has
been carried out by following the steps below, we will not explicitly describe
the execution of every step.

The method for research activity (al) consists of the following steps:

e Anayze existing source programs in order to capture the knowledge
of what kinds of names are usually needed.

) Develop naming principles for each type of name found through the
above analysis in accordance with commonly used naming conven-
tions.

e Apply the naming principlesin practical software development tasks
and refine the principles as appropriate in light of practical experi-
ence.

. Let expert software developers review the naming principles; refine
the principles according to their comments.

The method for research activity (a2) consists of the following steps:

. Having done (al), analyze the naming principles and consider which
types of names can exist in source programs as well as in other types
of software documents.

. Develop name derivation rules for those names that can appear both
in source programs and in other types of software documents.

e Consider systematic ways for applying the name derivation rules in
practical application domains and devel op a systematic name creation
method.

. L et expert software developers review the name creation method and
refine it as appropriate.

The method for research activity (a3) consists of the following steps:

e Apply the natural naming principles in programming with a com-
monly used and widely accepted programming language.

41

Analyze the resulting naturally named programs and seek ways for
simplifying and improving the programming language so that the nat-
urally named programs would be more readable.

Specify a new programming language according to the analysisin the
previous step.

Implement a prototype compiler for the new programming language
and refine the language to make it suitable for compilation.

The method for research activity (a4) consists of the following steps:

Analyze typical abbreviation patterns and information in comments
of existing source programs.

According to the analysis, define methods for disabbreviating the
names in existing source programs.

Basing on the disabbreviation methods, develop a computer tool
which can process existing source programs, suggest natural replace-
ments for the abbreviated names in the programs, and produce more
understandabl e naturally-named versions of the source programs.

Evaluate this tool by using source programs from several application
domains, and, if possible, modify the tool and disabbreviation meth-
odsto increase the efficiency of the tool.

The method for research activity (ab) consists of the following steps:

Provide educational material and arrange courses on the natural nam-
ing principlesfor different groups of software developers.

Let the software developers use the naming principles for different
periods of time.

Survey the software devel opers using aformal questionnaire.

By analyzing the answers from software developers, assess the use-
fulness of the naming principles.

42

sourULUTRY

sureagoad
20JN08
peajelasdqqesi(q

[——

soureu
pojelaadqqe
gurure1uoo
surexgoxd
gunysixy

T

™

"(S96UR108 1 PIPUNOJ UT) Yo easa .l aY) JO S NSSary] [PT8INBIL eiuoo sjustimoop a1emijog

soureu
[eanyeu
qhm
sureaford | S~
304M0g foryejuewardur] stshreuy
ureuro(
i —
!
00 Futweu gutuweu pednjeu uor}eadd
R
el ! saourapIn
SFenguey v HepIiny 10] PO
B N A 2

N ! 7/
I
|

gurureu pednjeu Jjo espl oy,

As the defined research methods indicate, the result of this research is a set
of guidelines, methods, and tools to take natural naming in practical use.
Figure 10 illustrates the results of this work. The methods and tools which
will be produced are in rounded rectangles and the broken-line arrows sym-
bolize how they affect the software devel opment processes shown as circles.

3.3 JUSTIFYING THE METHODOLOGICAL APPROACH

In this research we are interested in software devel opment work asit is being
carried out inindustrial organizations. Software development is studied from
the viewpoint of individual software developers and maintainers. We are
mostly concerned how easily or effectively a software developer or main-
tainer is able to perform in his or her work. Although the quality of devel-
oped software systems is important, we are less directly concerned about
that in this thesis. Here, we are more interested in the software process than
in software products. However, we believe that when a developer or main-
tainer can easily understand the software documents being studied, he or she
gains a better understanding about the software system or product as well.

As our perspective is that of a software developer or maintainer who has to
produce, study, and understand software documents in his or her work, this
research can be described as bel onging to the software engineering and com-
puter science research traditions. We speak about software systems, by
which we mean systems in which software is executed by processors or
computers. Software is considered to mean only computer software. This
distinction is necessary because some manufacturers of electronic entertain-
ment equipment use the word "software" to mean music on compact discs
and motion pictures on video tapes. Software systemsinclude all systems for
which executable software has been generated from source programs or
from other types of descriptions processed with software generation tools.
The term "software system" can thus be applied to traditional computer sys-
tems such as accounting or text processing systems, as well as to less tradi-
tional systems such as portable telephones and factory automation systems.

livari (1991) lists software engineering research as one research paradigm
for information systems development. Thiswork could thus be considered as
research related to information systems. However, this is not the main
emphasis of this work. Information systems research is usualy concerned
about much higher-level issues, such as efficiency of an organization which
is using an information system. An information system can be seen as a
much wider concept than our concept of a software system. Development
models for information systems cover many human and organizational
aspects that traditional software engineering methods do not deal with (Ker-
ola and Freeman 1981). Information systems are human systems. They do
not necessarily even include software systems. Because studying natural
naming in the context of information systems would widen the scope of this

44

research tremendously, we will speak about software systems and follow the
software engineering research tradition.

Then, why do we want to do constructive research while studying the prob-
lems related to natural naming? Why are we constructing a new reality by
introducing guidelines and methods for natural naming, and providing
experimental tools to facilitate the use of natural naming in software devel-
opment and maintenance? First, we would like to note that the constructive
approach is the traditional research method used in the software engineering
research tradition (livari 1991). Moreover, we point out the following rather
practical reasons:

Because using abbreviations is a tradition in programming and soft-
ware development, we could not explain the ideas and potential bene-
fits of natural naming without constructing material in which natural
naming is used. To provide appropriate material about natural nam-
ing, we need to apply natural naming in a systematic manner. This
requires constructing some guidelines and methods for natural nam-

ing.

It isunlikely that people could improve their software documentation
practices without being taught through practical examples and meth-
ods. In the case of naming and other programming style factors, some
people seem to be somewhat blind to what they are doing. For exam-
ple, before starting to use natural naming on September 21, 1988, the
author of this thesis, who now claims to be an expert in avoiding
abbreviations, had been using abbreviations in programming for
about eight years without clearly realizing that he was using abbrevi-
ations.

In the beginning of thisresearch, we had only the idea of natural nam-
ing, and we had been using natural names in practical software devel-
opment work for about half a year. We had seen that natural names
simplify software documentation, but we were unsure about all possi-
ble consequences of the idea. Doing constructive research was a way
to explore this new idea.

In the previous chapter we explained that other researchers have
failed to prove whether different naming styles significantly affect the
understandability of source programs. For this reason, it is the
author's belief that it isimportant to first lay firm grounds for the use
of natural naming. After constructing an "infrastructure” for natural
naming, it will be possible to gain more knowledge of the practical
application of natural naming to assess its real effect on understand-
ability.

45

Constructive research is the main characteristic of this work, but we are not
claiming that this is purely constructive. We can find traits of several other
research approachesin this work (Jarvinen and Jarvinen 1993):

. Explorative research means studying a phenomenon about which lit-
tle or no previous knowledge exists. This work can be seen to be
explorative, because in the beginning of this research natural naming
was a new idea which had not been systematically used in software
development.

e Theresearch method for activity (a5) defined in the previous section
can be seen as afield study, as we are asking the opinions of software
developers after they have been exposed to the ideas of natural nam-
ing. With the field study we try to find more evidence to support the
use of natural naming.

. In action research aresearcher participates in the process which is the
research subject. In this work, software development and mainte-
nance are the processes being studied. Because the author of this the-
sis has about five years of previous experience on software
development in commercial organizations, there are certainly some
aspects of action research involved here.

Kuhn (1962) introduced the concept "scientific paradigm™ which can be
characterized as a certain way of thinking among the members of a scientific
community. Kuhn sees science, and especially such natural sciences as phys-
ics and chemistry as processes in which revolutionary discoveries are made
from time to time. The scientific revolutions change the thinking of entire
scientific communities. people start communicating with new concepts,
measuring new things in the world, studying new problems, etc. Scientific
revolutions are changes in scientific paradigms.

There are also other interpretations for the word "paradigm™ (livari 1991)
which is one reason why we would not like to place thiswork under a certain
paradigm. Another reason is that it is possible that the Kuhnian paradigms
are not so relevant in research related to software systems. Although atti-
tudes in the software engineering community have changed and new
research trends emerged during the short history of computers, we cannot
say that this research community has reached stable agreements about the
nature of software development. The recent papers by Jackson (1994) and
Glass (1994) indicate that no strong paradigms in the Kuhnian sense exist in
our community. Jackson (1994) has the opinion that the nature of software
development work is not yet profoundly understood. Moreover, Glass
(1994) has said that our research community is in crisis, largely because
researchers are not able to measure the real efficiency of software develop-
ment methods and tools (Potts 1993, Fenton 1993, Fenton et al. 1994).

46

We consider that this research can be done without bothering about para-
digms in strict sense. Much of this work (e.g. developing natural naming
principles for programming) could have been done much earlier, even when
the first high-level programming languages were introduced. Thisis a third
reason not to tie this with time-dependent paradigms. Feyerabend (1975) has
recommended prejudiceless attitudes towards scientific work. We take this
attitude by not tying ourselves to paradigms.

47

4 RELATED WORK
4.1 INTRODUCTION TO RELATED WORK

When we are interested in finding ways for making source programs and
other software documents more understandabl e to people (e.g. through natu-
ral naming), we can find many connections between our research and other
research carried out in the field of software engineering. Although the word
"understandability” is not always explicitly mentioned, most software engi-
neering research aims at helping software developers to understand user
needs, market requirements, technical limitations, technical possibilities, etc.
more easily, and thereby to develop more satisfactory software systemsin a
cost-effective manner. We could thus cover quite a large number of related
works, but in the following we will only discuss work which is most closely
and interestingly related to our research.

Asthe use of natural naming has the greatest impact on source programs, we
will discuss other approaches to make source programs more understand-
able. These approaches include various programming guidelines; tools
which can show source programs in different format than conventional edi-
tors and produce high-quality listings; and programming languages which
are designed to be easy to read.

The use of natural naming should make source programs more maintainable.
For this reason, we will discuss tools built to increase maintainability of pro-
grams or to help in understanding source programs in software maintenance.

Names in source programs, regardless of whether they are abbreviated or
natural, are constructed using the elements of natural languages (e.g. natural
words, abbreviated natural words, and letters used to form the words of nat-
ural languages). Research on naming means studying the use of natural lan-
guages in software documentation. Therefore, we will discuss other research
areas related to natural languages. Natural languages and their use are
addressed in many other scientific fields. These include linguistics, semiot-
ics, and subfields of philosophy. As the essential idea in natural naming is to
avoid abbreviations, we will discuss how the use of abbreviations has been
taken into account in the above mentioned scientific fields.

4.2 APPROACHES TO INCREASING UNDERSTANDABILITY
OF SOURCE PROGRAMS

4.2.1 Guiddinesfor naming and programming style

Several programming guidelines have been published for enhancing the
understandability of source programs (e.g. Ledgard and Tauer 1987, Plum
1984). As well as public guidelines, written internal programming style
guidelines exist in many software development organizations. In addition to
aiming at understandabl e source programs, the published programming style
guides aim at enhancing portability and efficiency of source code. In many
cases these issues seem to be considered more important than understand-
ability. Oman and Cook (1991) have carried out an extensive study on pub-
lished programming style rules. They have found that there exist many
contradictory rules, which indicates that many of the rules are personal opin-
ions of individuals, and more research effort should be devoted to program-
ming style issues.

Naming in programming is, however, a subject that has not been widely
addressed by the software engineering research community. Rowe (1985)
has published a rather general article dealing with the issue, but he does not
provide practical solutions to the problems. Neither have Oman and Cook
(1991) been able to find very accurate naming rules from the literature. Usu-
aly, programming style guidelines as well as textbooks for programming
and software engineering suggest that clear and descriptive names should be
used, but they do not advise how the names can be made descriptive.

It is hard to know why naming has received so little attention, although it is
obviously one of the most important factors that contributes to the under-
standability of programs (Gellenbeck and Cook 1991). One reason may be
the amazing pace with which computers and programming languages
evolve. Asthere are so many interesting things to be researched in the evolu-
tion of technology and in the social impact that computers have made, such
things as the names in programs are easily forgotten.

Many researchers are interested in the syntactic and notational matters in
programming languages, but pay less attention to the syntax and semantics
of names. These are traditionally considered to be outside of the syntax and
semantics of programming languages. The meaning of namesisimportant to
humans, but in compiler theories there do not exist such concepts as syntax
and semantics of names (Aho et al. 1986). It is well known that compilers
treat all kinds of names similarly without caring about how understandable
the names are. Many of the people who have been involved in defining and
developing programming languages possess a mathematician's background.
Therefore, they are inclined to favor short notations, and different
approaches, such as natura naming, do not necessarily attract them. Simi-

49

larly, many people carrying out practical software development have a tech-
nical background, and their education has not paid much attention to human
issues, such as the understandability of documentation.

Although naming as a research subject has not attracted many, there are,
nevertheless, publications that deal with naming in programming. Keller
(1990) published natural naming rules at the same time that Paper | of this
thesis was in press. Although both publications contain quite similar ideas
and their objectives are the same, they were written totally independently.
Keller does not provide as deep a classification of program elements as we
have done in Paper I.

Some naming rules and general discussion about the subject have been pub-
lished by Anand (1988), Carter (1982), Johnson (1987), and Marca (1981).
An interesting notion expressed by Carter (1982) is that the number of dif-
ferent words that we need for constructing the names in the programs of a
large software system is likely to be calculated in hundreds rather than in
thousands.

Table 2 provides a comparison between the natural naming principles pre-
sented in this thesis and the naming rules which are given in the publications
which are mentioned above. As can be seen by studying Table 2, the most
essential difference between this thesis and other publications is that we
clearly consider the overuse of abbreviations harmful. For this reason, we do
not provide any rules for abbreviating.

Commenting is a form of documentation that uses the same means to
express information as the names in programs, namely the letters and words
of anatural language. An essential finding in thisthesis, also made by Keller
(1990), is that some comments become superfluous when natural names are
used. This proves that comments and names are closely related program-
ming style factors. Both appropriate commenting and naming aim at enhanc-
ing the understandability of programs. Therefore, publications that deal with
commenting are related to the subject of this thesis. However, there is no
clear consensus about appropriate commenting. Many published comment-
ing rules have been found contradictory (Oman and Cook 1991), and vary-
ing opinions and ideas about appropriate commenting have been expressed
(e.g. Grogono 1989, Kaelbling 1988).

50

"PapIA0Id ST poyIBW UOITEaId SWeU J1eWRISAS W

's1els 199(0ud Juswido pAep a1emijos e a10jeq 31A1s
Buiwreu areido.idde noge aa.6e pnoys ajdoad 1ey peisabbns si 1|

"passnasip afe s91A1s Buiwreu Jood o) suoseal [eILI0SIH

"PASSNTSIP S1 SIUSLUILIOD PUe Salleu Usamisq Uoire Rl ay L

‘uaAIb ae swrelboid pawreu Ajpreudoidde jo sojdwex3

"papIn0id a1e soweu afeldoidde Jo sajdwex3

‘papin0id afe Bulweu 1oy SISI| PJOM

"pepIn0id a1e soweu pate .l BulysinBusip Joj ssnbiuyoss |

"UaAIB ae syuewe jp welBold Jo spuy Jusse)Ip Jojsant BuiweN

‘pauRIURW S| Buo| AJoA 8q 10U pjnoys sawreu eyl uoiuido ay |

"PopIN0Id B.1e suo IR IASIgge Buiwioy Jo) sainy

"paz01110 AjBuos SIsuoIrRIAIgae JOasnay L

'swelboud Jo Alljigqepueisiepun pue Alljigepes.
JoJueniodwi siajAis Buiweu areldoidde ue eyl paziseydwo si |

"Buiwreu uo Ajurew sareUB2U09 uoIrdIgnd ay L

(¢66T)
Il 43dvd

(066T)
| 43dvd

(066T)
BIPH

(886T)
pueuy

(286T)
plefpe

(286T)
u

osuyor

(G86T)
amoy

(e86T)
J=)0 2lg)

(186T)
ORI

SNOILVOI19Nd 3HL NIS3dN.1v3d

‘Buireu 01 parepJ suoledlignd Bulredwo) “z a|qeL

51

4.2.2 Program visualization tools

At present, electronic forms of source programs are usually stored as ASCI|
files which may contain only the basic set of ASCII coded symbols. Source
programs that are accepted by commercial compilers may not contain any
specia information, such as graphics or information about fonts and colors.
However, there are experimental systems that allow source programs to be
stored, viewed, and printed in visually more appealing forms. Baecker and
Marcus (1990) present this kind of a system which brings similar features
into program editing as we have in the present systems for text processing.

The following are the essential features in the program visualization system
introduced in Baecker and Marcus (1990):

e A program can be viewed, edited, and printed in a typographically
readable form from which the compilable source code form can be
automatically derived.

. Different fonts can be used for different kinds of elements in pro-
grams, e.g., function names can be boldface Helvetica and function
arguments small Helvetica.

e There can be different kinds of comments (e.g. external and internal)
and they can be highlighted in various ways, e.g., by using boxes or
gray shading around comments.

e Specia marginal comments can be added beside the actual source
code.

e Advanced text processing features, such as page headers, are avail-
able to make source programs more document-like.

The programs created with program visualization systems could look like
the onein Figure 11 (see (Baecker and Marcus 1990) for better examples.) It
isvery likely that programming environments will develop to allow different
kinds of fonts, colors, etc. to be exploited in order to make programs more
readable. This kind of development is merely technical, whereas the natural
naming approach is human-oriented. We emphasize that programmers need
to have human abilities to make their programs understandabl e and we have
created naming principles for programmers to enhance their documentation
abilities. Neither a fully automatic tool nor another person can make some-
one else's programs understandable, since the program writers are the best
experts who understand their own work completely. Hence, they are the right
people to take the responsibility of making their programs understandable to
others.

52

Customer number string.
Return code for validation.

Index for string access.

A program to validate a customer number.

#define CNUMMAX 13
#define VALID 0

#define NVALID 1

isvalid (

char cnumbr [],
int *rcode)

int i ;
Length of the customer number. int len ;
*rcode = VALID
len = strlen (cnumbr) ;

if (len > CNUMMAX)
Checking for appropriate length.
*rcode = NVALID ;
1
else
{
for (i=0 ; i<len ; i++)
{
if ((cnumbr[i] < '0') ||
Checking that the string (cnumbr[i] > '9'))
contains only digits. {
*rcode = NVALID ;

Figure 11. A program with enhanced typographic style.

Gellenbeck and Cook (1991) have carried out empirical studies which indi-
cate that the meaningfulness of names and the existence of appropriate com-

53

ments contribute more to the understandability of programs than certain
typographic signals, such as different fonts. On this basis, naming seems to
be more important than different fonts. However, developing such systems
asthe one by Baecker and Marcus is important, since we should consider all
possible aids to make the usually complex source programs more friendly
for human eyes.

4.2.3 Literate programming

A famous approach to enhance the readability and understandability of pro-
gramsis literate programming introduced by Knuth. In his introductory arti-
cle about the approach he expresses deep enthusiasm about the invention
(Knuth 1984). A central idea in literate programming is that programs
should not be considered just inputs for compilers, but they should be
regarded as writings, comparable to the works of literature. Then, the activ-
ity of programming should be regarded as a writing process in which style
issues play an important role. The task of a programmer is thus to produce
descriptions which are meant to be read by humans, and compilation is a
secondary issue.

The objectives of literate programming are clearly the same as those of this
thesis. We have stressed that it is important to regard source programs as
documents. We have personally experienced that when we concentrate on
writing programs with a style such that we spend time in choosing appropri-
ate words for names and carefully comment the entire program module, we
manage to produce programs with enhanced quality which contain few
errors and need little time for debugging.

Literate programming is based on special literate programming environ-
ments which have tools that support the approach such that programs are
created together with their documentation. Literate source programs are
written with a special notation which allows natural language texts and state-
ments written with a programming language to be mixed into a single file.
This literate source program can then be processed with special tools which
produce the actual compilable source program and a separate literate pro-
gram document. Figure 12(a) is an imaginary example of a literate source
program made with similar notation as used by Cordes and Brown (1991).
Figure 12(b) shows the corresponding literate program document generated
automatically from the program in Figure 12(a).

@* Check customer number.
This program checks the validity of a customer number.

@* Routine for customer number validation.
@d
@<Constant definitions of the programe@>
@c
isvalid (char cnumbr [],

int *rcode)
{

@<Internal variables for the programes
@<Check customer number validity@>
}
@* Constants.
The following constants are defined:
Maximum length for the customer number,
return code when customer number is valid, and
return code when customer number is not valid.

@<Constant definitions of the programes=

@* Actual program code.

The validity of the customer number is checked
according to the following criteria: The length of
the customer number may not exeed the maximum limit
and it may contain only numerical digits.

@<Check customer number validity@>=
@<Initialization of the variablese>

if (len > CNUMMAX)

{

@<Customer number is not valides

}

else

{

@<Check that string contains numerical digitse>

}

@<Check that string contains numerical digits@s=

for (i=0 ; i<len ; i++
#define CNUMMAX 13 {
#define VALID 0 if ((cnumbr[i] < '0') |]
#define NVALID 1 (cnumbr[i] > '9"')

{
@* Variable declarations. @<Customer number is not valide>
An index for the customer number string and a variable
to store the length of the customer number are }
declared as internal variables.
@* Setting values for variables.
@<Internal variables for the program@s=
@<Initialization of the variables@>=
int i, len ; *rcode = VALID ;
len = strlen(cnumbr) ;
@<Customer number is not valides=
*rcode = NVALID ;

Figure 12(a). An example of a literate source program.

Several experimental literate programming environments have been built.
However, the programming community has not widely accepted the literate
programming approach. Cordes and Brown (1991) discuss the reasons why
literate programming has not gained wide popularity. One obvious reason is
that, although a literate programming environment aims to help in software
documentation, it also brings extra complexity to the programming work.
Literate programmers have to learn to manage a literate programming lan-
guage, in addition to an ordinary programming language.

Cordes and Brown (1991) point out that it is usually not the lack of text pro-
cessing skills or tools that makes software documentation difficult, but
merely the general difficulty in finding words to explain what a source pro-
gram does and the difficulties in organizing one's thoughts into an intelligi-
ble form. One can create programs which are badly documented even in a
literate programming environment. It seems thus quite obvious that special
tools cannot automate software documentation. Tools can only help to over-
come some practical difficulties, but the real origins for understandabl e pro-
grams are human skills. For example, in Figure 12(b) we can see that a
literate programming environment automatically produces a document in
which the program is organized into numbered sections. But, however, it is
the responsibility of the person who writes the real program, like the one in
Figure 12(a), to decide the appropriate division of the program.

55

Table of contents

Check customer number Section 1 Page
Routine for customer number validation Section 2 Page
Constantsiuiiiiiiiiiiiaan Section 3 Page
Variable declarations Section 4 Page
Actual program code Section 5 Page
Setting values for variables Section 6 Page

Sour ce code

1. Check customer number

This program checks the validity of a customer number.

2. Routine for customer number validation.

<Constant definitions of the program>

char
int

cnumbr [],
*rcode)

isvalid (

{
<Internal variables for the programs>
<Check customer number validitys>

}

3. Constants.

The following constants are defined:
Maximum length for the customer number,
return code when customer number is valid, and
return code when customer number is not valid.

<Constant definitions of the programs>=

#define CNUMMAX 13
#define VALID 0
#define NVALID 1

This code is used in section 2.

4. Variable declarations.

An index for the customer number string and a variable
to store the length of the customer number are
declared as internal variables.

@<Internal variables for the program@s=
int i, 1len ;

This code is used in section 2.

5. Actual program code.

The validity of the customer number is checked
according to the following criteria: The length of
the customer number may not exeed the maximum limit
and it may contain only numerical digits.

<Check customer number validitys=
<Initialization of the variables>
if (len > CNUMMAX)
<Customer number is not valids>

}

else

{

}

<Check that string contains numerical digitss>=

<Check that string contains numerical digits>

for (i=0 ; i<len ; i++
{
if ((cnumbr[i] < '0') |]
(cnumbr[i] > '9'))

{

<Customer number is not valids>

This code is used in section 2.

6. Setting values for variables.

<Initialization of the variables>=
*rcode = VALID ;
len = strlen(cnumbr) ;

<Customer number is not valid>=
*rcode = NVALID ;

This code is used in section 5.

Variableindex
cnumbr 2, 5, 6
CNUMMAX 3, 5

i 4, 5
isvalid 2

len 4, 5, 6
NVALID 3, 6
rcode 2, 6
VALID 3, 6
Section index

<Constant definitions of the program 3> Used in 2.
<Internal variables of the program 4> Used in 2.
<Check customer number validity 5> Used in 2.
<Check that string contains numerical digits 5>
<Initialization of the variables 6> Used in 5.
<Customer number is not valid 6> Used in 5.

Figure 12(b). An example of a generated literate program document.

In our view, the essentia difference between conventional and literate pro-
gramming is that in literate programming the words and sentences of a natu-
ral language can be treated in a different manner. A literate programming
environment allows a program writer to arrange natural words and sentences

56

according to a different notation than that of a conventional programming
language. The literate program in Figures 12(a) and 12(b) is the same as the
naturally named program in Figure 5(c). By comparing these versions of the
same program, it can be noticed that by using long natural names we can
similarly put long sentences into a program as can be done in aliterate pro-
gramming environment.

For example, in Figure 5(c) we have a name

check customer number validity

which is uniquely distinguished by the compiler, and in Figure 12(a) thereis
the expression

<Check customer number validitye@s

which could be uniquely distinguished in a literate programming environ-
ment. Moreover, many of the written texts that are in the literate program in
Figure 12(a) could be put into comments in a conventional program. Thus,
although literate programming environments offer many features which help
software documentation, we can claim that literate programs can aso be
written by using appropriate comments and long natural names with conven-
tional programming tools.

The literate programming approach is important for the research related to
software documentation, though the approach has not, at least to date,
become especially popular. It is essential to stress that source programs are
writings that need to be studied by humans, and, therefore, an appropriate
program writing style is important.

4.2.4 Easy-to-read programming languages. COBOL and SNAP

The difficulty of computer programming was realized during the early
decades of the history of computers. Only specialized people could write
computer programs and people who would benefit from the programs could
not know for sure whether the programs were doing correct computations.
Because of these problems the widely-used programming language COBOL
(Common Business-Oriented Language) was defined in the late fifties (Sam-
met 1981). That language tried to bring features of natural languages into
computer programming. SNAP (Stylized Natural Procedural Language) was
another language, although not widely known, which tried to make com-
puter programming resemble writing in a natural language (Barnett 1969).
Because natural naming also attempts to make computer programs more
readable, the mentioned programming languages are related to this work. It
is also interesting to note that during the first decades of computing there
were discussions about using a pure natural language to dictate the behavior

57

of computers (Sammet 1966).

COBOL is a programming language that hasits originsin the fifties and has
been very widely used since the late sixties. COBOL is intended to be used
in business-oriented applications and the motivations for its definition
involve the following (Sammet 1981):

) Due to the time and cost of programming, there was a need for a lan-
guage that would be easy to learn and use.

e Therewas aneed to broaden the base of those that can state problems
to computers.

e Therewasadesirefor people without a programmer's education to be
able to read and write computer programs. It should also be possible
for managers to be able to read programs in order to check that vari-
ous kinds of financial calculations are performed correctly.

e There was a need to have programs that could be run on computers
from different manufacturers.

The devel opers of COBOL responded to the needs listed above by defining a
language which is in many ways close to natural English. The solution is
thus related to the principle of natural naming.

The natural features of COBOL include such aspects as having keywords
ADD, SUBTRACT, MULTIPLY, and DIVIDE instead of short mathematical
symbols such as"+", "-", "*" and "/". Using natural words instead of mathe-
matical symbols raised many disputes among computer scientists, and,
therefore, COBOL variations allowing the use of mathematical symbols also
exigt.

Many documentation-related aspects were considered when COBOL was
defined. Thefirst official version of the COBOL definition included the fea-
ture that names could be long and natural names were intended to be used. A
COBOL program is intended to be a document itself. The language has doc-
umentation related keywords such as AUTHOR, DIVISION, and SECTION
which should help the program writer to incorporate relevant documentary
information and to divide a program into logical parts.

COBOL has been widely used, although it has been neglected by many com-
puter scientists (Shneiderman 1985). Whether or not COBOL has succeeded
in being a language that yields readable and understandable programs is too
difficult to be answered here. In our opinion, the writing skills of program-
mers are still needed to achieve appropriate under-standability of programs.
Of course, COBOL programs can be made difficult to read and abbreviated
names have been used in programming with COBOL.

58

SNAP is another programming language which tries to imitate natural lan-
guages. SNAP is similar to COBOL in the sense that it includes a large
repository of reserved words borrowed from English. As listed by Barnett
(1969), the objectives in the development of SNAP were largely the same as
in the development of COBOL. SNAP did not, however, become a widely-
used or well-known language. Probably the language never had commer-
cially-available compilers; it was used mainly by students. SNAP was
designed for applications involving mainly text processing, file reading, and
printing. Its narrow applicability is one reason why it was only used in small
circles.

Obvioudly, the developers of COBOL and SNAP thought that by incorporat-
ing many reserved words from a natural language into the programming lan-
guage, the programs written in that programming language become easy-to-
read and understand. Using abbreviations has been and still is common in
COBOL programming. The SNAP programs shown by Barnett (1969) con-
tain many abbreviations. Therefore, the approach of making programs
understandable is different in the case of these languages than in the case of
using natural naming. Having many reserved words borrowed from natural
languages does not necessarily make source programs more understandable.
Reserved words are symbols which need to be repeated over and over again
in source programs, and they are the same in every program. For this reason,
it should not really harm if short special symbols (e.g. "+" and "-") are used
instead of longer reserved words (e.g. ADD and SUBTRACT), because
these symbols have to be used very often and need therefore to be kept in
mind. Names, on the other hand, are unique in every program. They are
more likely to show how a program differs from other programs.

It is certain that most programming languages have been designed to make
computer programming easier in some way. It is impossible to think that
somebody would have created a programming language which he or she
would not have thought to be better in some fashion than some existing lan-
guages. Because there exist hundreds of programming languages (Sammet
1972), we cannot discuss all of them here. However, to our knowledge, there
Is no programming language which has been specifically designed to incor-
porate the use of natural naming.

4.3 TOOLSTO AID IN SOFTWARE MAINTENANCE

In the previous section we discussed techniques for making source programs
more understandable and thereby more maintainable. In this section we will
introduce dlightly different techniques which help to maintain different
source programs and other software documents which have been found hard
to maintain. Here too, we will mostly concentrate on source programs,
because they are usually the most reliable documents for software maintain-
ers (Bennett et al. 1991).

59

Perhaps the simplest tools to make source programs more maintainable are
so-called prettyprinters which can produce program listings in which differ-
ent text fonts are used and reserved words of the programming language are
printed with different fonts than the rest of the program text. Thetermisalso
used for tools which can adjust alignment and indentation in source pro-
grams.

More advanced systems are browsing tools which can be used to study a set
of source programs for detecting dependencies between different source pro-
gram files. A browsing tool can, for example, find all places in al source
files where a certain function or procedure is being called or a certain vari-
able used. With a browsing tool a software maintainer can easily jump from
one source program to another to study interdependent parts of an applica-
tion. An example of a browsing tool is Sbrowse by Computer Enterprises.
Suitiala (1993) introduces another browsing tool.

In addition to these tools there are more complex reverse engineering tools
used to make existing applications more maintainable. These are discussed
for examplein IEEE Software (Vol. 7, No. 1), in the proceedings of software
mai ntenance conferences (e.g. ICSM 1994), and in the proceedings of work-
shops related to program comprehension (e.g. WPC 1993). As there are
many both experimental and commercial tools available, we will discuss
them according to a known taxonomy. Chikofsky and Cross (1990) classify
the reverse engineering activities and tools as follows:

. Rever se engineering tools and techniques aim at producing a higher-
abstraction-level description of an existing system. Practical reverse
engineering tools can, for example, produce graphical-textual
descriptions, such as data flow diagrams, from existing source pro-
grams. Reverse engineering is a process of examination and it does
not include modifying an existing system.

. Design recovery is a special case of reverse engineering. Design
recovery produces higher-level abstractions from existing systems,
but it also adds external knowledge to the higher-level abstractions
being produced. Biggerstaff (1989) has written an important article of
design recovery.

) Restructuring means renovating an existing application without
changing its external behavior. Restructuring does not switch from
one abstraction level to another. In practice, restructuring can be, for
example, modifying source programs so that goto statements are no
longer needed.

) Redocumentation means changing a system's documentation without
making any functional changes to the software system. We see redoc-

60

umentation as a special case of restructuring, although Chikofsky and
Cross (1990) have listed it as the ssmplest form of reverse engineer-
ing. Replacing abbreviated names with natural ones is one possible
form of redocumentation.

. Reengineering is the process in which a system is modified after hav-
ing been reverse engineered.

Chikofsky and Cross (1990) admit that some of the above-mentioned terms
can be vague in some cases, but those terms are certainly important for clar-
ifying different activities and tools used to make existing systems more
maintainable. The existence of reverse engineering toolsis an indication that
source programs being maintained are usually hard to understand.

New kinds of tools to help in software maintenance are being developedin a
project called Application Management Environments and Support (AMES
1993). The research activity (a4) defined in Section 3.1 above was partly
carried out in the AMES project. Software maintenance is included in a
wider concept called application management in the AMES project (Boldyr-
eff et al. 1994). The project is producing tools which use a special database
containing information about the application being maintained. The new
kinds of tools are the following (AMES 1993):

) Impact analysis tools try to show a software maintainer which other
documents need to be modified if a certain modification takes place
in one software document.

) Navigation and display tools allow a user to navigate among a set of
software documents which can be documents other than source pro-
grams. Above, we discussed browsers which can be used to view
dependencies among source program files. Navigation and display
tools can be characterized as browsers which allow other documents
in addition to source programs.

e Application understanding tools aim at forming a combined represen-
tation of different types of software documents. Through the use of
application understanding tools, a user should be able to view docu-
mentation of a software system from different points of view.

61

4.4 FIELDS OUTSIDE SOFTWARE DOMAIN: LINGUISTICS,
SEMIOTICS, AND PHILOSOPHY

Although linguists, semiaticians, and philosophers have not directly studied
how natural languages should be used in software documentation, we shall
briefly discuss their fields here because our research isrelated to natural lan-
guages. Linguists study natural languages. Semioticians study the symbols
of natural languages among other symbols used in human communication.
Philosophers have also been interested in how natural anguages correspond
with the reality around us. As the main idea in natural naming is to avoid
abbreviations, we will try to find out what has been said about abbreviations
in these fields.

An excellent textbook of basic linguistics has been written by Fromkin and
Rodman (1988). The field of linguistics studies the syntax and semantics of
languages, as well as word formation (morphology), the sounds of language
(phonology), and sound production (phonetics). The history of natural lan-
guages and their role in society are also linguistic subjects. Because natural
languages have first had a spoken form with writing systems having been
invented later, linguistics is in many ways more concerned with spoken lan-
guages. In software documentation, we are more interested in written lan-

guages.

Linguists admit that the nature of our natural languages is not yet fully dis-
covered and it perhaps never will be (Fromkin and Rodman 1988). Natural
languages are indeed very complex, although some similarities can be found
between all human languages. Due to the complexity of languages, it is nat-
ural that there are several schools of linguistics. Traditiona linguistics has
been criticized by Y ngve (1986) who thinks that languages should be stud-
ied merely as a result of human activities, not as objects per se. Traditional
linguistics tends to view languages without referring to human activities
behind the languages.

Although linguistics sees abbreviating as one way to coin new words in nat-
ural languages, we have not been able to find opinions or data about the use-
fulness of abbreviationsin linguistic publications. It iswell known that some
abbreviations have been used about two thousand years (Hall-Quest 1979),
but the benefits or disadvantages of their use have not been widely dis-
cussed. In fact, we have found the only articles dealing with abbreviations
and efficiency of communication in the field of "technica linguistics’,
namely in the publications of IEEE Professional Communication Society
(Logsdon and Logsdon 1986, Ibrahim 1989). Neither of these publications
refer to any other articles which dealt with the use of abbreviations in com-
munication. Thus, we have good reason to believe that the use of abbrevia-
tions has not been a popular research topic. It is seen asaproblem only in the

62

fields of technical documentation and communication.

To find articles dealing with abbreviations and communication, we have
conducted extensive searches in databases containing abstracts of articles
from linguistics, informatics, and several other fields. The results of the
searches were interesting, though we did not find any material which could
be strongly related to this thesis. Concerning the use of abbreviations, we
found articles which, for example, reported that the growing popularity of
abbreviations causes problems in teaching foreign languages (Ching 1983),
and that one of the hardest word types for people to understand are abbrevia-
tions (Smith and Taffler 1992).

Although linguistics has not provided answers to the question whether
abbreviations are useful or not, there is one linguistic finding which is valu-
able for this research. The finding is that al human languages have changed
during the history of mankind (Fromkin and Rodman 1988). Our languages
are not stable. They are changing al the time. Perhaps the most obvious
change is that new words emerge within our languages. It is assumed that
new words emerge partly because new technological innovations are being
made. Words like "microprocessor”, "Prolog", and "mainframe” did not exist
before computers were invented. To communicate about computers and soft-
ware, many popular abbreviations have been coined: RISC, PC, WWW, etc.
The abbreviations in source programs and other software documents can
also be seen as new symbols in our languages. In this thesis we thus consider
that the overuse of previously unknown abbreviations changes our lan-
guages too rapidly and in an uncontrolled way, and can therefore be consid-
ered harmful.

As we are concerned about the overuse of abbreviations in software docu-
mentation, we are interested in the change and the future of our languages.
The language of software documentation is, in our opinion, developing in
the wrong direction because too many abbreviations are entering the lan-
guage. This is the essential difference between this thesis and linguistic
research. Linguists are more interested in the history and present state of nat-
ural languages. The historical change of languages has been an important
research subject in linguistics. It is understandable that linguists have not
studied the usage of natural languages in technical documentation, because
in order to do that one needs to be at least a partial expert in the technical
field in question.

Benjamin Lee Whorf is a linguist who deserves to be mentioned here. He
has proposed a famous hypothesis which states that the natural language we
use dictates how we can think and how we perceive the world around us
(Carroll 1956). Whorf concluded this after studying the languages of Ameri-
can Indians, and comparing their languages to the Indo-European languages.
Soloway (1986) has also noted the Whorfian hypothesis while studying the

63

mental processes of programmers. Subjectively, we have found that, com-
pared to using abbreviations, using natural names in programming helps a
programmer to think about the problems being solved. This supports the
Whorfian hypothesis, if we consider that abbreviations are symbols of one
language and natural names are symbols of another language.

Semioticsisascientific field that includes linguistics. Semiotics also studies
symbol systems other than just natural words. Non-lingui stic symbols which
have meanings to people include, for example traffic signs and lights, music,
and paintings. Even buildings can be considered to transfer meanings.
Because the semiotic world includes so many potential research subjects,
some people are doubtful whether semiotics can be considered a science
(Tarasti 1990). An influential person in the field of semiotics is Umberto
Eco. His books about semiotics (e.g. Eco 1984, Eco 1990) provide numerous
references to philosophy, which indicate that natural languages have been
subjects of interest to people who have been pondering the most fundamen-
tal questions about living as a human being in this world.

It seems that semioticians have not studied the problems related to abbrevia-
tions either. The situation is the same as in linguistics. Semiotics deals with
existing symbols and how these symbols relate to the human behavior. To
our knowledge, semioticians have not studied whether it is useful, or not, for
efficient communication to form new symbols by abbreviating existing natu-
ral words, or to construct acronyms from the first letters of alist of natural
words. Andersen (1990) presents a specific theory for computer semiotics,
but he does not deal with the goodness of symbols. Andersen's semiotic the-
ory is directed towards using a computer and making computers more user-
friendly, not towards documenting computer software. Therefore, he does
not specifically address the problems of software documentation.

A central question related to languages is how the elements of languages
(e.g. words) actually relate to the real world around us. Nelson (1992) writes
that we actually know as little about these matters as was known by the phi-
losophers of ancient Greece. Nelson (1992) surveys many different theories
of linguistic reference. His study shows that there is little consensus in
regard to these matters. One question in this research is that what does a
name in a software document mean or refer to. Our claim is that a name like
"customer_number" refers more effectively than a name like “cnumbr” in a
source program. But if the name "customer_number" refers well, where does
it refer to? If it refersto alocation in a computer's memory where a customer
number is stored, what does the customer number indicate? If each customer
has a number, what does that number mean? Why do customers have num-
bers? Why aren't they just called by their names?

These are difficult questions. Answering them would require much knowl-
edge about the software system in which the customer numbers are used.

64

The referent of a name depends on the context, i.e. on the software systemin
guestion. However, if we use the name "customer_number"”, that nameisin
its textual appearance closer to the question "What is a customer number?"
than an abbreviated name like "cnumbr" would be. To clarify this matter, let
us imagine two discussions between A and B. The discussion with an abbre-
viated name could be:

"What is cnumbr?"

"It is an abbreviation for customer number."

"What does the customer number mean?"

"Well, in this particular application the customer number ..."

w2

The discussion with a natural name could go asfollows:

A: "What is customer_number?'
B: "WEell, in this particular application the customer number ..."

From these imaginary discussions we can see that, although the actual mean-
ing of a name may be difficult to explain, it is possible that the discussion is
at least one question shorter when natural names arein use.

It is a complex philosophical question how a language relates to the redl
world. What are the meanings of the words and other symbols? Can the
meanings be explained? The philosopher Ludwig Wittgenstein has provided
an answer to the latter question. According to Wittgenstein (1953), the
meanings of words and other symbols become evident in the situation in
which they are used. Some words have quite stable and usual meanings, but
the meanings of some less frequently used words depend much on the con-
text of usage. Wittgenstein (1953) uses the term "language game” to denote
the process in which we associate meaning to words and other symbols.
Therefore, a name like "customer_number” in some source program means
something specific in that program or in the larger software system in which
the program is used. Developing a software system can, in the Wittgenstein-
ian sense, be regarded as playing a language game in which certain names
and word combinations gain a special meaning. We can exploit Wittgen-
stein's theory to support the use of natural naming by noting that the lan-
guage game of a software system becomes more complex when too many
abbreviations arein use.

To our knowledge, Ludwig Wittgenstein is a philosopher who has worked
more on the philosophy of languages than other philosophers. He has also
been noted by other writers in the field of computer science (e.g. Zemanek
1974, Sowa 1990). In some ways, Wittgenstein's life and work can be seen
asaproof about the complexity of human languages. He was arather radical
and extraordinary person (Jarman 1993). During his younger years, he pub-
lished a well-known theory related to logic and languages (Wittgenstein
1921). Having invented this theory he considered that he had solved the

65

essential problems of philosophy, and he therefore abandoned philosophical
work for years. Later, however, he discovered that his earlier theory did not
match with the real world and natural languages. He returned to philosophy,
but, according to the preface of Wittgenstein (1953), he was disappointed
that he was unable to formulate a clear and elegant theory about languages.

It seems that the meanings of all textual symbols cannot be exactly
described. The meanings of some symbols become evident from the way
they are used (Wittgenstein 1953). To still investigate the problems of mean-
ing, let ustake alook at the cartoon in Figure 13. Although that drawing was
not intended for serious study, it isinteresting for us. The manin thefigureis
using paint and a paintbrush to mark the objects in his environment with
their appropriate names. There is, however, something essential in the figure
that the man cannot mark with its name. It is hard to write on air or on the
sky. Even the paintbrush is hard to mark, but on the paint itself the man can-
not write anything. Paint is a specia object because it is used to mark the
other objects. Paint shows us the names of the other objects, but its own
meaning we can only guess.

One could also ask whether the marked things are clear in Figure 13. We
answer that things can aways be made clearer, but they never become com-
pletely clear. Something is always left unexplained and is considered evi-
dent. The man in the figure supposes that everybody knows what the word
"house" means. To make things even clearer, the man could, for example,
write on the wall that the word "house" means "a building for a person or a
family to livein" (Webster's 1989). He could continue by telling more about
the meanings of the words "building”, "person”, and "family". He could
write a really long story about what the verb "to live" means. Actualy, he
could spend the rest of his life explaining the nature of the objects which he
has just marked with paint. The problem whether the things are clear in the
figure is the same as whether natural names are clear enough. In Section 2.3
we said that it largely depends on the context which natural names can be
considered sufficiently informative. In this sense, we can say that things are
certainly clear enough in Figure 13. Normally we can recognize houses and
trees even if they are not marked asin the figure.

66

The origina thesis has a Gary Larson’s drawing on this page. Because of
copyright reasons the drawing is not included in the .pdf version of the the-
sis. In the drawing there is a man who has written “THE DOG”, “THE
CAT”, “THE HOUSE”, “THE TREE”", etc. on the corresponding objects in
his environment. To find more information of Gary Larson’s drawings,
please visit www.thefarside.com

THE FAR SIDE © FARWORKS, INC./Dist. by UNIVERSAL PRESS SYNDICATE.
Reprinted with permission. All rights reserved.

Figure 13. A man who made things clear.

67

4.5 DISCUSSION OF RELATED WORK

To summarize the previous sections of this chapter, we state the following:

There are many approaches to increasing the understandability and
maintainability of source programs and other software documents,
but the issue of naming has not been explicitly taken into account in
most cases.

In the same way as natural naming, the other approaches to increasing
understandability lack hard evidence about their usefulness. For this
reason, it is difficult to compare this thesis and the related research.
This is a common problem in our field. Glass (1994) describes this
type of research as "advocacy research”.

Considering the discussion on linguistics, semiotics, and philosophy,
our main conclusion is that the researchers inn those fields are mostly
addressing different problems than we are. The researchers outside
the domain of computers are interested in the history and present state
of languages, whereas we are interested in the future of languages.
The use of abbreviations in software documentation can be seen to
change the natural language of software documentation. If too many
abbreviations are used, that may cause future understandability prob-
lems for the readers of that documentation.

This thesis deals with the understandability of source programs and other
software documents, and with the use of natural languages in software docu-
mentation. Although natural languages and understanding are important
research issues in many branches of computer science and software engi-
neering, most research regarding these issues is not very closely related to
this thesis. Below, we discuss two of these research branches and explain
how they differ from this work:

Specia techniques have been developed to make computers under-
stand natural languages (Allen 1987, Smeaton 1992). If these tech-
niques became popular in practical applications, it would certainly
make computers even more useful to mankind. Natural language
understanding technigques can be applied, for instance, in multimedia
systems (Rowe and Guglielmo 1993). Computerized natural language
understanding is not related to our work, because these techniques are
not used in the case of software documentation.

Different kinds of models for human mental activities in program
understanding have been proposed (Curtis 1985, Hoc et al. 1990).
Perhaps the most famous work in this area has been done by Soloway
and Ehrlich (1984) who have shown by empirica human experi-

68

ments that professional programmers possess certain kind of mental
programming plans, according to which they develop and understand
source programs. It is very important to do this kind of psychological
research. However, we do not consider much of thisresearch on mind
models closely related to our work, because the researchers have not
specifically studied how different styles of natural language usage
affect the working of the human mind.

69

5 INTRODUCTION TO THE INCLUDED PAPERS

Six papers, which have been accepted in scientific journals and conference

proceedings during a five-year period, are included in this thesis.! The
papers provide solutions to the research activities which we defined in Sec-
tion 3.1. The papers correspond with the defined research activities as shown
in Table 3.

Table 3. Relations between research activities and included papers.

Research | Description of the research activity Number | Publication

activity of paper | year
code

(a1) Produce detailed naming principles. I 1990
(a2) Formulate a method for early name creation. | Il 1992
(a3) Investigate how programming languages Il 1994

could be made more suitable for the use of
natural naming.

(a4) Investigate how already abbreviated names v, v 1995, 1995
could be replaced with natural onesin exist-
ing source programs.

(ab) Produce evidence of theusefulnessof natural | VI 1995
naming.

5.1 PAPER I: GUIDELINES FOR NATURAL NAMING

This paper introduces a set of natural naming principles for programming
with the C programming language, though most of the naming principles are
applicableto other procedural programming languages aswell. The essential
idea in the paper is the principle of natural naming. That principleis derived
from the notion that it is useful to avoid abbreviations in order to minimize
the risk that something is misunderstood. The ultimate goal is the avoidance
of abbreviations al together, and thus we have the principle of natural nam-
ing. The term "natural naming" is, however, not used in Paper |. That term
was first used by Keller (1990), at the time when Paper | wasin press.

The natural naming principles presented in Paper | are meant to guide pro-
grammers rather than provide absolute naming rules which programmers
should follow. It is pointed out that natural naming principles cannot be very
strict, because natural languages are informal and not always accurate means
for presenting information. To exploit the naming principles in practical

1. To inform non-Finnish readers, we would like to point out that it is common in Finland,
and in some other northern European countries, to construct a doctoral thesis of papers which have
been accepted in conference proceedings and journals. Thisthesisis of thistype.

70

work, one should use a compiler that can distinguish rather long names,
preferably at least 30 charactersin length.

Section 2 of Paper | presents the naming principles. As the principles are
based on a natural language, some characteristics of natural languages are
discussed as an introduction. The names needed in programs are classified
into two fundamentally different categories. names that represent informa-
tion and names that represent action in programs. The most important names
in the latter category are the names of functions and procedures. The names
of macros and labels a so represent action, but they are given little attention
in Paper 1. The names that represent information include constants and vari-
able data (variables, tables, structures, etc.). The essential difference
between these two types of names that represent information is that informa-
tion expressed by the names of constants is fixed during the process of pro-
gramming, whereas the information expressed by the names of variable data
can change during the process of program execution.

Separate name tables for constants, variable data, and functions are pre-
sented in Section 2. In fact, each table provides alow-level classification of
program elements in its main category. For instance, variable data is broken
down into indexing variables, statuses, counters, etc. The name tables pro-
vide keywords as well as example names for each low-level class of pro-
gram elements. Keywords are recommended to be used in name formation
and their usageis guided by arulethat a keyword should be either the first or
the last word in a name. Keywords for function names are verbs which
should be used as the first words of the names.

Programs often include variables that contain the same information but are
used in different contexts. They may also include functions that are perform-
ing similar actions but differ in some aspects. For these reasons, there has to
be means for constructing related names in programs so that their related-
ness is evident and their difference as clear as possible. For this purpose,
Paper | presents attributes which can be characterized as name refining
words. Attributes are classified according to which properties they express
or in what kinds of situations they are used.

Section 2 includes a program example in which the natural naming princi-
plesarefollowed. A program to evaluate and print prime numbersis used for
this purpose.

The third section of Paper | is devoted to discussion of the historical back-
ground of naming, the benefits of natural naming, and the difficulties in the
use of natural naming. It is evident that the use of natural naming affects the
entire program module documentation. Obviously, it makes the documenta-
tion as awhole simpler by reducing the need to use other forms of documen-
tation, such as commenting and pseudo-coding. The need to have in-line

71

commentsisreduced, since natural names usually provide the same informa-
tion that traditionally has been shown by comments (e.g. a variable defini-
tion does not need to be accompanied with a comment in the same line to
explain what the variable is used for). Pseudo-code for a program can be
characterized as structured natural language. Its under-standability is
between that of a programming language and a natural language. Asthe use
of natural naming brings source programs closer to a natural language, the
need to have an intermediate pseudo-code is reduced.

Being able to simplify program module documentation is one of the most
important advantages of natural naming. Other advantages, such as easier
pronunciation and ease in remembering the names, are mentioned in Section
3, but they are less obvious. The difficulties which may be involved in the
use of natura naming include the facts that some software development
tools till limit the lengths of names and the syntax of atypical programming
language is designed for short names. Another difficulty is that software
developers have to learn to invent names, to spend time in choosing appro-
priate names, and to write with a style that alows long names to be fitted
conveniently on screen and on paper.

Paper | ends with the following paragraph which concisely summarizes the
message of the paper:

The basic purpose of informative naming is that the documentary value of pro-
gramswould increase. This has the practical benefit of raising the quality and
understandability. Programs are information. Success in our current information
society depends much on how effectively information will be transferred, under-
stood, and learned.

5.2 PAPERII: AMETHOD FOR INITIAL NAME CREATION

When software systems are developed in a disciplined manner, the imple-
mentation phase is usually preceded by other development phases which
also involve writing documents that describe the system under devel opment.
These high-level documents can be, for example, written requirement
descriptions or graphical-textual models such as data flow diagrams and
state transition diagrams. Obviously, all types of documents that describe the
same system must be written using the same concepts related to the system
under development. For example, arequirement description may define that
customers must be identified by a"customer number", and a source program
must have a corresponding variable in which the customer number is stored.
When the same concepts are used in different types of documents, they
should have the same names so that the entire documentation of a system
would be understandable. Thus, a concept which is "customer number" in a
requirement description document should be called with the same word
combination in other documents including source programs. It should not,

for example, be called "c_number", "cnbr", or "customer code".

72

In order to ensure that all software documents have the same names for the
same concepts, we should be able to create the names before any software
documents are written. Paper |l provides a solution to this problem by intro-
ducing a method called Disciplined Natural Naming (DNN). The DNN
method should be used prior to the actual software development to create a
repository of names that are acceptable in various types of software docu-
ments.

The DNN method uses DNN tools in a systematic name creation process.
Section 2 of Paper Il introduces the DNN tools, which are naming princi-
ples, name creation tables, name creation templates, and reference name
tables. The essential naming principleistheidea of natural naming. Some of
the principles presented in Paper | are briefly discussed. Additionally, a new
alternative naming approach for functions, "object-oriented naming", is
explained. A simple name shortening ruleis given.

Name creation tables contain applicable final words to be added in the end
of existing names in order to derive new names. There exist name creation
tables to create attribute names, event names, and state value names. For
each name creation table an example of its usage is given. For instance, if
one needs to create event names that can be associated to the object "cus-
tomer", one uses the relevant name creation table with appropriate final
words yielding the event names

"customer_introduction”,
"customer_removal”,
"customer_entering”, and
"customer_leaving".

Name creation templates are similar to name creation tables, except that the
templates also provide name refining words to be added in the beginning of
existing names. There exist name creation templates for event-related and
constraining names. A typical constraining name is one which limits the
properties of a certain object or attribute, for example,

"maximum_customer_number_length"
describes the limits of "customer_number”. A typical event-related nameis
"customer_entering_time"

which can be used to describe temporal properties related to the event
"customer_entering”.

Reference name tables provide final words to implement data structures and
single dataitems, verbs to implement functions, and some general constants

73

to be used to describe state information. Reference name tables are not used
in equally systematic way as the other DNN tools. They may be referred to
whenever needs to find new names emerge.

The third section of Paper 1l introduces the DNN name creation process in
which the DNN tools -- name creation tables and name templates -- are used
in certain order. Name creation is a stepwise process, involving twelve steps,
in which the name creator applies a name creation tool, analyzes the derived
candidate names, and makes decisions whether the candidate names repre-
sent essential concepts of the application domain. According to the name
creator's decisions, the candidate names are accepted, rejected, or modified.
Those candidate names which are accepted as such, or after modification,
become potential names, which means that they might be needed in the doc-
umentation of the system to be developed. The stepwise name creation pro-
cess is demonstrated using an example. The created names are then used in
some exampl e software documents.

The fourth section of Paper 11 is devoted to discussion about the benefits and
weaknesses of the DNN method. The essential benefit of the method is the
same as that of the principle of natural naming in general: the understand-
ability of source programsisimproved. As software development is partly a
communication and learning process, fixing the names early should help
software devel opers communicate efficiently with each other as well as with
different interest groups for the system being developed. Software develop-
ers need to communicate with such interest groups as end users, marketing
people, and service personnel who are usually not familiar with software
development. A benefit is that it is likely that the communication activities
are efficient when software devel opers can communicate with the same nat-
ural words and names which they use in the entire software documentation.
Additional plausible benefits of the DNN method include ssmplified soft-
ware documentation and easier search activities for finding specific loca-
tions in source programs and other documents.

Use of the DNN method results in a repository of names which should be
used in al software documents of a system. Having such a name repository
means, in fact, regulating how a natural language should be used in software
development work. Because natural languages are complex and natura
words can be used in so many ways, it is difficult to control the usage of nat-
ural languages. Thisis seen to be the most essential weakness of the DNN
method. Another weakness is that the practical use and maintenance of a
name repository may turn out to be difficult.

Thelast part of Section 4 surveys related research. Although the problems of
naming in programming have been scarcely addressed by the research com-
munity, several research papers have been published in which naming or the
use of natural languages has been discussed from different points of view

74

(e.g. in the context of requirement specification and reverse engineering).

Paper 1l concludes by stressing the importance of naming to achieving
appropriate readability and understandability of software documents.
Although the DNN method needs more testing in practical software devel-
opment situations, the paper has demonstrated that pre-development name
creation is possible.

5.3 PAPERII1: A PROGRAMMING LANGUAGE TO SUPPORT
NATURAL NAMING

Because natural naming has not been widely used in programming, we pre-
sume that none of the existing programming languages has been designed to
be especially suitable for programming with natural names. Natural names
themselves contain much information. When conventional programming
languages are used, software devel opers have to double-specify many things
in source programs if they use natural names. For example, the naming
guidelines in Paper | recommend that counting variables should be ended
with the word "counter”. However, counting variables are normally always
integers. When we define a counting variable such as

int character counter ;

we actually double-specify that it is an integer variable. Both the reserved
word "int" and the word "counter” indicate that here is an integer variable in
guestion. A compiler could be made to infer solely from the word " counter”
that the type of the variable isinteger.

The variable definition above is one example which indicates that program-
ming languages could be different when natural names are used. Because
programming languages are fundamental tools in software development, we
decided to investigate how existing procedural programming languages
could be improved to make them more suitable for programming with natu-
ral names. The method in this study was that we first examined existing nat-
urally named programs, and made decisions on how the constructs of the
programming language could be improved to:

e decrease redundant information in naturally named source programs,
e makethe usually-long natural names more easily fit in the programs,
e make source programslook more like documents, and

e encourage software developers to produce better software documen-
tation.

We tested the ideas by implementing them in an experimental programming
75

language called Pacific. Section 2 of Paper |11 describes the characteristics
of this programming language.

Because we consider that names are among the most important means for
making source programs understandable, the syntax of the Pacific language
was designed to highlight names in source programs. To achieve this, we
tried to minimize the use of special characters (eg.;, (,), [,], {, and }) as
syntactic elements in the language. The assumption was that if programs
contained many special characters, that would disturb the reader from focus-
ing attention on the names. More about Pacific's general characteristics can
be read in Subsection 2.1 of Paper I11.

An essentia feature in Pacific is to use the natural words in names to infer
what type of information a name represents. The Pacific type system is thus
unique. The compiler uses a few natural words to detect some frequently
used information constructs. For instance, names ending with the word
"index" are considered to be integers, and names ending with "record" are
considered to be records. All defined names in a Pacific program can aso
serve as data type specifications for other names. A name can inherit the
type of another name when there is enough similarity in the wording of the
two names. For example, the name "new_customer_number" can inherit the
type of the previously defined name "customer number”, because both
names are ended with the same word combination. The Pacific type system
is described in more detail in Subsection 2.2 of Paper 1Il.

The Pacific compiler checks all natural words used in the names. Only those
words are accepted which are found in the lexicon of the compiler. If special
terms from the application domain are needed, they must be inserted into the
lexicon. Software developers must thus document their programs by using a
controlled vocabulary. Having a lexicon embedded into a compiler alows
the introduction of a new variable type in the programming language. In
Pacific, these variables are called text variables and they make it easier to
incorporate naturally written phrases into source programs. Text variables
are explained in Subsection 2.3 of Paper 111.

The Pacific language includes some special control structures. Its procedures
are special in the sense that they can always return textual status information
when called. These features are discussed in Subsections 2.5 and 2.6 of
Paper 111.

To summarize the features of Pacific, we point out that the following fea-
tures most directly support the use of natural naming:

e The Pacific lexicon, when maintained appropriately, provides a stan-
dard vocabulary for software documentation.

e Thetype system encourages the use of natural naming as a set of nat-
76

ural words are used to indicate the types.

e Thetext variables make it easy to present state information as textual
phrases.

Some of the features in Pacific support natural naming only indirectly. For
example, the special control structures reduce the need to repeat names in
source code, and the syntax in which the use of special characters is mini-
mized aims at highlighting names in source code. Pacific's mechanism for
handling global data cannot be considered to be specifically related to the
use of natural naming, but it is a feature which should be useful when a soft-
ware system consists of many source program files.

Section 3 of Paper |1l provides a qualitative evaluation of the Pacific lan-
guage. The main conclusions are the following:

e Writing naturally named programs with Pacific usualy results in
shorter programs than with other programming languages.

) Because Pacific programs resemble pseudo-code in many ways, their
readability should be better than other programming languages.

e Using a lexicon for officially acceptable words should bring more
discipline into software documentation, although we have no practi-
cal experience with using alexicon in multi-person projects.

) Pacific is dightly slower than other procedural languages. It may not
be suitable for time-critical programming.

The main objective in implementing an experimental compiler for the
Pacific programming language was to demonstrate the ideas for making
source programs more understandable. Pacific could still be improved. As
explained in Subsection 3.2, natural language understanding techniques
could be further studied for programming language design.

77

5.4 PAPERIV: DISABBREVIATION OF TECHNICAL TEXT

We use the word "disabbreviation” to mean the process of replacing abbrevi-
ations with more natural expressions. The word is also used to denote a
replacement for an abbreviation. Paper IV, in which the author of this thesis
is the second writer, describes an experimental tool designed to look for
abbreviations in technical documents, suggest replacements for abbrevia-
tions, and ask the user of the tool to choose the best replacement for each
abbreviation. Thetool is called a "disabbreviator".

Asit isassumed in this thesis that abbreviations are harmful for understand-
ability, it isimportant to find ways for getting rid of existing abbreviationsin
documents which need to be used for along time. Because replacing abbre-
viations with natural substitutions is quite a mechanical process, it can be
carried out with a computer tool. The disabbreviator tool discussed in Paper
IV can be used to disabbreviate various kinds of technical documents,
including source programs.

In order to examine electronic documents and decide which character pat-
terns are acceptabl e, the disabbreviator tool has a stored dictionary contain-
ing acceptable English words. Subsection 2.1 of Paper IV discusses various
data structures needed in the disabbreviation process. In addition to a general
dictionary, the tool needs lists of reserved words of programming languages
and operating systems, and pairs of commonly used abbreviations and their
natural counterparts. The disabbreviator tool can also use domain-specific
dictionaries and lists of known disabbreviations which have been created
when the tool has been used.

The disabbreviation process has three phases. First, the tool checks the text
of the entire document and stores all unknown words in a database. In the
second phase, the tool interacts with the user, who it asks to give a replace-
ment for each unknown word. Whenever possible, the tool suggests replace-
ments for the unknown words. In the third phase of the disabbreviation
process, the selected unknown words are replaced with the expression cho-
sen by the user.

The disabbreviator tool is intelligent as it can suggest replacements for
unknown words. While inventing replacements, the tool uses special disab-
breviation methods which are based on commonly used abbreviations and
certain disabbreviation rules. The tool uses also knowledge about previous
disabbreviations when it deduces new disabbreviations. i.e., when it tries to
find possible replacements for an unknown word. The tool is thus able to
become more clever as it is being used. The disabbreviation methods and
process are explained in Section 2 of Paper V.

Section 3 of the paper describes experiments done with the disabbreviator

78

tool. Both source programs and other kinds of technical texts were used as
test material. It seems that disabbreviating the names in compiled source
programs is somewhat easier than disabbreviating other kinds of technical
documents, because the names in source programs are already found "cor-
rectly spelled” in compilation. The results of the experiments with various
texts indicate that the performance of the tool is appropriate in most cases.
For instance, for more than half of the unknown names in source programs
the tool could propose acceptabl e substitutions.

One of the experiments described in Paper |V is an understandability test in
which students had to respond to guestions about examples of source pro-
grams. Half of the students were studying source programs containing
abbreviated names. The other half of the students studied the same source
programs which had natural names created with the disabbreviator tool.
Both groups had to respond to the same questions. The performance of the
student group which studied naturally named programs was significantly
better when compared to the other group which studied the same programs
containing abbreviated names.

5.5 PAPER V: DISABBREVIATION OF SOURCE PROGRAMS

Paper V is continuation of the work discussed in Paper V. Because source
programs are rather special kinds of technical texts, their proper disabbrevia-
tion requires a tool which is tailored for disabbreviating source programs
written with a certain programming language. For this reason, another
experimental disabbreviation tool was built. Thistool, which is partly based
on the general disabbreviation tool introduced in Paper IV, is discussed in
Paper V. The reasons for having a special tool to disabbreviate names in
existing source programs can be summarized as follows:

e When atool disabbreviates namesin source programs, it must be able
to treat each name as a unique whole. Therefore, it must be able to
first decompose a hame into separate words according to commonly
used naming conventions, then disabbreviate the distinct words, and
finally put the words together to make a replacement for the original
unknown name.

e Theterminology used in source programs is unique. For this reason,
the dictionary and other data structures of a disabbreviation tool
should contain words which are typically used in programming.

e Source programs are disabbreviated to make them more maintain-
able. A disabbreviation tool for source programs should, therefore, be
able to work in harmony with other software maintenance tools.

e Source programs usually contain natural words in comments. The
information in comments should be exploited in the disabbreviation

79

methods.

Section 3 of Paper V introduces a disabbreviation tool called InName to dis-
abbreviate names in C source programs. C is a rather popular programming
language these days and there exist many applications written in C which are
currently being maintained. Although the InName tool is specifically tai-
lored to process C programs, the disabbreviation methods are largely inde-
pendent of the programming language in use because the names are first
extracted from the source programs and then they are disabbreviated in a
separate phase. The following features of the InName tool are discussed in
Section 3 of Paper V:

Thetool uses a special grammar to decompose names found in source
programs into separate words. The grammar finds separate words
when underscores or capital letters are used as word separators. For
example, the names "prev_pos' and "DispBuff" are decomposed into

words "prev”, "pos’, "Disp", and "Buff", which are then compared to
the words in the stored dictionaries.

The general dictionary of the InName tool is rather small, containing
only about 1300 words commonly found in names in source pro-
grams. By analyzing the names in existing source programs, we have
discovered that the number of words needed in names of a software
system is usually much less than one thousand words. A disabbrevia-
tion tool is faster and produces less silly disabbreviations when its
general dictionary issmall.

Disabbreviation methods include using lists of commonly used abbre-
viations and their natural counterparts, deducing possible disabbrevi-
ations from user-given name substitutions, and testing whether word
combinations found in comments can be used as replacements for
unknown names. For example, the tool is able to make the following
suggestions:

Unknown names: Suggested replacements:
tmpnamelen temporary name length
currwinheight current window height

when its internal abbreviation lists include the information that the

strings "tmp", "len”, "curr”, and "win" are commonly used abbrevia-
tions for "temporary”, "length”, "current", and "window", respec-
tively. When a source program contains a variable declaration such

as.

80

int nbyte ; /* number of bytes in buffer */

the tool will suggest that the name "nbytes" should be replaced with
the name "number_of bytes in_buffer".

The third section of Paper V also discusses the phases of the disabbreviation
process and the graphical user interface of the InName tool. The three phases
of the disabbreviation process could be called the name inspection phase, the
interactive disabbreviation phase, and the source program modification
phase. The graphical user interface is used in the interactive disabbreviation
phase, when the tool displays the source program to the user together with
unknown names and possible substitutions.

The InName tool has been evaluated by using it to disabbreviate the source
programs of severa existing applications. One of the test-case applications
is being developed further after being disabbreviated. In the case of each
application the tool was used by a different person. The results of the tests
with different applications are presented in Section 4 of Paper V. About 40%
of the name substitutions suggested by the tool were acceptable in the tests.
Learning to use the tool does not require much effort, and one application
can be disabbreviated within afew days.

5.6 PAPER VI: AN EMPIRICAL STUDY OF THE USE OF NATU-
RAL NAMING

The natural naming principles introduced in Paper | have been taught in sev-
eral courses. A naming course has usualy been combined with a genera
programming style course in which such issues as appropriate program mod-
ule layouts, indentation practices, and formulation of different types of pro-
gram statements have been taught. Also, a naming handbook has been
compiled on the basis of the principles explained in Paper I. The naming
handbook contains several detailed examples and gives advice on how to
arrange long names in programs.

During a five-year period, about fifty people have been given a naming
course and at least as many have been given a naming handbook. The soft-
ware developers taught to use the natural naming principles come from dif-
ferent organizations and have various backgrounds. Courses have been
given and handbooks delivered to university students, several groups of soft-
ware developers in industrial organizations, and software developers in a
research institute.

To assess the usefulness of the natural naming approach and to explore the
viewpoints of software practitioners, several empirical investigations have
been carried out. Some of the software developer groups who have been
given anaming course or who have studied the naming handbook have been

81

guestioned by presenting them aform on which they have had to respond to
guestions. Paper V1 presents the results from one such empirical study.

The second section of Paper VI discusses related work on naming and the
difficulties in measuring the effects of different naming styles. Section 3
briefly explains what is included in the naming handbook, what has been
taught in the naming courses, and how the questioning of the groups was
arranged in practice. Altogether 52 software developers responded to the
inquiries. One group of respondents was classified as less experienced soft-
ware developers from industry, two groups represented experienced devel-
opers from industry, and one group was software devel opers from a research
institute.

The inquiry forms presented to the respondents contain 25 statements, such
as "The time required to write long names slows down software develop-
ment”. The subjects had to judge the relevance of each statement by answer-
ing "completely disagree”, "partially disagree", "no opinion”, "partialy
agree”, or "completely agree”. All the statements have been listed in atable,
together with statistical data of the responses. Some of the statements deal
with practical matters, some with communication and learning during the
process of software development, some with understandability of programs,
some with problem solving through judging suitable names, and the final

two statements deal with typing.

The fourth section of the paper contains an analysis of the responses given to
the inquiries. The responses are analyzed both by combining all responses
together and by identifying different groups of respondents. In addition to
the natural organizational division of groups, specific groups are formed by
combining those respondents who reacted to a certain question in the same

way.

The responses are analyzed from several points of view and many observa-
tions are made, including observations related to program understanding and
communication, observations on the thinking process during programming,
observations on practical matters, and observations related to writing of pro-
grams. In addition, different respondent groups are compared to each other.
The following are the most interesting results of the analysis:

e The natural naming approach can be considered useful in software
development. We could find nothing that would prevent us from rec-
ommending the use of the natural naming in practical work.

) Experienced software developers in industrial organizations were
more enthusiastic about natural naming than less experienced devel-
opers or the software developers at the research institute.

82

e Compared to using abbreviations, the respondents believe that using
natural names facilitates their thinking process. Trying to invent
descriptive names is obviously an important means for problem anal-
ysisin software development.

e Theunderstandability of programsis hard to assess, since the respon-
dents did not give clear opinions whether natural naming facilitates
communication or had improved the understandability of source pro-
grams.

The concluding section of Paper VI contains discussion about the implica-
tions of the results of the study. As the natural naming approach seemsto be
useful in practice, both software development organizations and the research
community should focus more attention on the subject.

83

6 CONCLUDING DISCUSSION
6.1 RESEARCH SUMMARY AND EVALUATION

This thesis describes constructive research which involves some empiricism.
The purpose has been to investigate how we could facilitate the use of natu-
ral naming in software development and maintenance. The research has
resulted in guidelines, methods, and experimental tools. Now, the question is
how well we have succeeded in this work.

The usua problem of software-engineering research also concerns this
work, as we can only provide a soft evaluation of what has been done. It is
usually difficult to provide hard and unambiguous evidence about the useful -
ness of software engineering methods and tools. Fenton (1993), Fenton et al.
(1994), and Glass (1994) have noted that we have practically no hard evi-
dence about how good commonly-used software engineering methods and
tools are. We believe that the reason for this "software-research crisis' is not
solely that researchers were too lazy and reluctant to provide practical evi-
dence, but a partial reason is that it is hard to make quantitative measure-
ments when software development and maintenance work is proceeding. If
some measurements can be donein certain cases, it is difficult to be sure that
a certain method or tool has caused the mentioned effect. Because of these
reasons we have not tried to unambiguously show that natural naming is
always useful in software development. The appropriateness of the natural
naming approach is merely a hypothesis in this thesis, though we have pro-
duced some positive empirical evidence.

Naming in programming and the use of natural languages in software docu-
mentation are research subjects which have not attracted many researchers.
To our knowledge, this thesis is the most extensive publication which deals
with problems of naming in software documentation. Because these prob-
lems have not been widely addressed by others, we wanted to study them
with a wide perspective, both in software development and maintenance.
The breadth of the research area has been an advantage for this work.
Becauseit is often difficult to explicitly separate software devel opment from
maintenance, it is better to study them both in the same research. We noted
earlier that the reasons for using abbreviations are partly historical. There-
fore, part of this work could have been performed during the time when the
first high-level programming languages were invented, when there was only
one wide computer research area. This also is a good reason for having a
wide research areain thisthesis.

The research reported in this thesis has been evaluated in the included
papers. Below, we briefly discuss how well we have succeeded in each of
the research activities from (al) to (a5) which were defined in Section 3.1:

84

(al)

(a2)

(a3)

The naming principles (Paper I) which were developed based on the
idea of natural naming have been received with much interest by the
software developers who have participated in the naming courses,
and who have been equipped with a naming handbook. Therefore, we
consider to have succeeded well in this research activity. In one com-
pany, for example, the name tables presented in Paper | have been
hung on the walls close to the desks of the software devel opers.

Paper Il introduces a method to create a name repository prior to the
actual software development process, and thereby to assure that all
software documents would contain the same names for the same con-
cepts. The most significant contribution of Paper Il isthat it explicitly
shows that pre-development name creation is possible, and the cre-
ated names can be used in software documents. Name creation is also
an analytical process which provokes the name creator to consider the
problems of the application domain. The name creation process can
thus be perceived as a domain analysis task.

The DNN method presented in Paper |1 has not been tested exten-
sively. The method is introduced in the context of one application
domain, that of library automation. We have tried to use the DNN
method in several other application domains, but it has not always
been successful. Fyson (1995) reports similar experiences while
working with the method. To make the method more applicable over
a wider range of application domains, it should be refined in some
way. It might be possible to enlarge the name tables which are used
during the first steps of the name creation process. However, because
applying the DNN method is not time consuming, it can always be
tried in cases of new application domains. If it does not seem to pro-
duce good results, other ways for terminology control should be con-
sidered.

With the programming language presented in Paper Ill, we have
shown that there are possibilities of improving existing programming
languages by making them friendlier towards natural naming. The
advantages and weaknesses of the new language are discussed in
Paper 1Il1. However, it is hard to prove that one programming lan-
guage is better than another language. Sammet (1972) notes that the
reasons why some programming languages become popular are not
always technical or scientific. The history of programming languages
has examples of this. Algol is considered a scientifically excellent
language, but it never became widely used in practice. COBOL has
not been favored by many scientists (Shneiderman 1985), but it isone
of the most widely used languages in the world. For these reasons, it
is hard to say whether the Pacific programming language would
become popular if it were developed as acommercial product.

85

Nevertheless, Pacific has features not found in other languages. The
most unique feature in the Pacific language is its type system accord-
ing to which type information is encoded in names. In most other pro-
gramming languages, names are supposed to contain no information
that can be exploited in compilation. Having type information
encoded in names decreases redundant information in source pro-
grams.

(ad) PaperslV and V describe toolsto convert abbreviated namesinto nat-
ural ones in existing source programs. The InName tool discussed in
Paper V is specifically tailored for disabbreviating source programs.
We consider to have succeeded well in finding ways to disabbreviate
existing programs. The InName tool has been successfully used to
process programs from various application domains. In a subjective
evauation, the usefulness of the tool can be considered obvious,
although we cannot measure its performance explicitly. Using
InName can also be seen as away for learning a previously unfamil-
iar application that needs to be maintained.

(a5) This research activity aimed at finding more evidence of the useful-
ness of natural naming. We formally questioned software developers
who had been given a handbook of natura naming, or who had
attended a course on natural naming, and described the results in
Paper VI.

We did achieve results in support of the use of natural naming. One of
the interesting findings was that experienced software developers in
industrial organizations were more enthusiastic about natural naming
than younger software developers or people working in a research
institute.

Considering the methodological approach, it is hard to consider that such an
issue as naming could be profoundly studied without trying to construct
something. When a researcher is trying to construct something (e.g. a pro-
gramming language or atool) which should support something else (e.g. nat-
ural naming), he or she learns more about that "something else". Doing
constructive research allowed us to get more personal experience in the use
of natural naming in practical software development work. While develop-
ing the Pacific compiler and the InName tool, we used natural naming in
programming. We had only positive experiencesin using it.

Because natural naming means using a natural language in software docu-
mentation, our research is related to other fields studying natural languages.
These fields include linguistics, semiotics, and some areas of philosophy. As
discussed in Chapter 4, we could not find anything in these fields which
would cast doubt on the ideas presented in this thesis. In the field of techni-

86

cal communication we found support for the idea of avoiding abbreviations
(Logsdon and Logsdon 1986, Ibrahim 1989). The fact that this work can be
related to some philosophical works indicates the complexity of our research
subject. Doing research related to natural languages is difficult, because we
cannot study languages very objectively. To do that, we should perhaps step
outside the domain of natural languages, or stop using natural languages
which is humanly impossible. Even thisthesis is written using a natural lan-
guage. Aswe areinterested in natural languagesin this thesis, we could even
say that we have described this research by using our research subject as a
description tool.

6.2 POSSIBILITIES FOR FURTHER RESEARCH

More attention should be focused on the use of natural languages in software
documentation. The software developers who were guestioned in the inquiry
described in Paper VI have the opinion that naming is a too much neglected
issue in software documentation. A natural language is an essential compo-
nent in most types of software documents (e.g. written documents, data flow
diagrams, and object diagrams). When studying natural languages in soft-
ware documentation, we should keep in mind that natural languages are not
static, but dynamic. They are changing all the time (Fromkin and Rodman
1988). Technical development, including development and introduction of
new software systems, is one reason why languages change. The most obvi-
ous way in which languages are changed by technical development is the
emergence of new words (see Figure 14). Because technical development is
accelerating rather than slowing down, we have to take care that our lan-
guages are developing in the right direction. Natural naming means taking
care that the languages of software documentation do not contain too many
abbreviations.

Setting technical and language development processes in parallel asin Fig-
ure 14 raises interesting philosophical questions. Did a microprocessor exist
before or only after it was given the name " microprocessor”? Was the micro-
processor invented at the moment when somebody called it for the first time
by that name? How much of the development is actually language devel op-
ment? Although questions like these are difficult ones, they need to be con-
sidered, at least in the case of software development, which results in
products that are merely conceptual than physical. A possible step towards
this kind of research would be to include the language change into the theo-
ries about mental mechanisms of software development (Curtis 1985, Hoc et
al. 1990, Detienne and Soloway 1990).

87

‘B|eted ul buido pasp sabenbue| pue ssifojouyss] T a4nbi4

INIL
2
apfo suyew E O
Kiened m w| B
SIS0 3/8M}J0S Ajiwe; Iosss00.d uosnBlo4-Aasse |\ s m W
[> 5 5
alppes O g=
Bubbngep Snq ssa.ppe Jlemodssioy il o=
ST voljexs W 3=
AKlowew ayaed - <
Y | lepad oxe.q anowl Ll &8 9
Buissaoo.d piom a1Aq 1 SALID mm @ E
BURI 9PIUBA JoJow [ew lUe J13sswiop 5 52
©) S5
ABXIP Jossaooudosoiw Jjo013e1 asioy ANn M T
- Z m

88

TECHNICAL DEVELOPMENT:

New technica innovations
emerging into the world

Because this thesis has focused mostly on conventional procedural program-
ming, it could be fruitful to study natural naming with other styles of soft-
ware. As object-orientation is gaining popularity these days, natural naming
could be studied in object-oriented programming which may need some spe-
cific naming principles. We believe, however, that it is not a problem to use
this naming approach in the context of other programming paradigms,
because we applied natural naming in logic programming with Prolog while
developing the InName tool.

One way to continue research related to natural naming is to use naturally
named programs in teaching. Thisiswhat the author of thisthesisis going to
do. Although it is hard to measure how effectively people learn, it isimpor-
tant to try to investigate the reactions of students when they are exposed to
programs which contain more natural words than conventional examples of
computer programs. Software development is also alearning and communi-
cation process (Curtis et al. 1988). The processis already active when soft-
ware devel opers are learning the subjects of their profession while studying
in schools, colleges, and universities.

89

REFERENCES

Abbott, R. J. 1983. Program Design by Informal English Descriptions. Com-
munications of the ACM, Vol. 26, No. 11, pp. 882 - 894.

Ackerman, F. A., Buchwald, L. S. and Lewski, F. H. 1989. Software I nspec-
tions: An Effective Verification Process. IEEE Software, Vol. 6, No. 3, pp.
31- 36.

Aho, A.V., Sethi, R., and Ullman, J. D. 1986. Compilers. Principles, Tech-
niques, and Tools. Reading, Massachusetts: Addison-Wesley. 796 p.

Allen, J. 1987. Natural Language Understanding. Menlo Park, California:
The Benjamin Cummings Publishing Company. 574 p.

AMES. 1993. ESPRIT Il Project no. 8156: Application Management Envi-
ronments and Support. Technical Annex. Grenoble, France: Cap Gemini
Innovation. 122 p.

Anand, N. 1988. Clarify Function! ACM SIGPLAN Noatices, Vol. 23, No. 6,
pp. 69 - 79.

Andersen, P. B. 1990. A Theory of Computer Semiotics. Cambridge, United
Kingdom: Cambridge University Press. 416 p.

Baecker, R. M. and Marcus, A. 1990. Human Factors and Typography for
More Readable Programs. Reading, Massachusetts: Addison-Wesley. 348 p.

Balzer, R. 1985. A 15 Year Perspective on Automatic Programming, |EEE
Transactions on Software Engineering, Vol. SE-11, No. 11, pp. 1257 - 1268.

Barnett, M. P. 1969. Computer Programming in English. New York: Har-
court, Brace & World, Inc. 260 p.

Bennett, K., Cornelius, B., Munro, M., and Robson, D. 1991. Software
Maintenance. In: McDermid, J. A. (ed.) Software Engineer's Reference
Book. Oxford, United Kingdom: Butterworth-Heinemann. Chapter 20. 18 p.

Biggerstaff, T. J. 1989. Design Recovery for Maintenance and Reuse. Com-
puter, Vol. 22, No. 7, 36 - 49.

Boehm, B. W. 1988. A Spiral Model of Software Development and
Enhancement. Compuiter, Vol. 21, No. 5, pp. 61 - 72.

Boldyreff, C., Elzer, P, Hall, P.,, Kaaber, U., Keilmann, J., and Witt, J. 1990.
PRACTITIONER: Pragmatic Support for the Reuse of Conceptsin Existing
Software. Proceedings of Software Engineering ‘90 (SE90). Cambridge,
United Kingdom: Cambridge University Press. Pp. 574 - 591.

90

Boldyreff, C., Burd, E. L., and Hather, R. M. 1994. An Evauation of the
State of the Art for Application Management. Proceedings of the Interna-
tional Conference on Software Maintenance. Los Alamitos, California
|EEE Computer Society Press. Pp. 161 - 1609.

Booch, G 1991. Object-Oriented Design with Applications. Menlo Park,
Cdifornia: The Benjamin Cummings Publishing Company. 565 p.

Bourne, C. P. and Ford, D. F. 1961. A Study of Methods for Systematically
Abbreviating English Words and Names. Journal of the ACM, Vol. 8, pp.
538 - 552.

Brooks, F. P. 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, Vol. 20, No. 4, pp. 10 - 19.

Brooks, R. 1978. Using a Behavioral Theory of Program Comprehension in
Software Engineering. Proceedings of 3th International Conference on Soft-
ware Engineering. Los Alamitos, California: IEEE Computer Society Press.
Pp. 196 - 201. Also in (Parikh and Zvegintzov 1983. Pp. 109 - 114).

Brooks, R. 1983. Towards a Theory of the Comprehension of Computer Pro-
grams. International Journal of Man-Machine Studies, Vol. 18, No. 6, pp.
543 - 554.

Caine, S. H. and Gordon, E. K. 1975. PDL -- A Tool for Software Design.
In: Freeman, P. and Wasserman, A. |. (eds) 1983. Tutorial on Software
Design Techniques. 4th ed. Los Alamitos, California: IEEE Computer Soci-
ety Press. Pp. 485 - 490.

Carrall, J. B. (ed.) 1956. Language, Thought, and Reality: Selected Writings
of Benjamin Lee Whorf. Cambridge, Massachusetts: The M.I.T. Press. 278

p.

Carter, B. 1982. On Choosing Identifiers. ACM SIGPLAN Notices, Vol. 17,
No. 5, pp. 54 - 59.

Chikofsky, E. J. and Cross, J. H. 1990. Reverse Engineering and Design
Recovery: A Taxonomy. |EEE Software, Vol. 7, No. 1, pp. 13 - 17.

Ching, E. 1983. Problems Caused by the Neologism in Teaching Chinese.
Annua Meeting of the American Council on the Teaching of Foreign Lan-
guage. San Francisco, California, November 24 - 26, 1983. 12 p.

Coad, P. and Yourdon, E. 1990. Object Oriented Analysis. Englewood Cliffs,
New Jersey: Prentice-Hall. 223 p.

Cordes, D. and Brown, M. 1991. The Literate-Programming Paradigm.
Computer, Vol. 24, No. 6, pp. 52 - 61.

91

CSTB (Computer Science Technology Board). 1990. Scaling Up: A
Research Agenda for Software Engineering. Communications of the ACM,
Vol. 33, No. 3, pp. 281 - 293.

Curtis, B., Sheppard, S. B., Milliman, P, Borst, M. A., and Love, T. 1979.
Measuring the Psychologica Complexity of Software Maintenance Tasks
with the Halstead and McCabe Metrics. IEEE Transactions on Software
Engineering, Vol. SE-5, No. 2, pp. 96 - 104.

Curtis, B. 1984. Fifteen Years of Psychology in Software Engineering: Indi-
vidual Differences and Cognitive Science. Proceedings of 7th International
Conference on Software Engineering. Los Alamitos, California: IEEE Com-
puter Society Press. Pp. 97 - 106.

Curtis, B. (ed.) 1985. Tutorial: Human Factors in Software Devel opment.
2nd ed. Los Alamitos, California: IEEE Computer Society Press. 730 p.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A Field Study of Software
Design Process for Large Systems. Communications of the ACM, Vol. 31,
No. 11, pp. 1268 - 1287.

Cusumano, M. A. 1989. The Software Factory: A Historical Interpretation.
| EEE Software, Vol. 6, No. 3, pp. 23 - 30.

Detienne, F. and Soloway, E. 1990. An Empirically-Derived Control Struc-
ture for the Process of Program Understanding. International Journal of
Man-Machine Studies, Vol. 33, No. 3, pp. 323 - 342.

Eco, U. 1984. Semiotics and the Philosophy of Language. London: Macmil-
lan Press. 241 p.

Eco, U. 1990. The Limits of Interpretation. Bloomington: Indiana University
Press. 296 p.

ESA. 1991. PSS-05-0 Issue 2. ESA Software Engineering Standards, 1ssue
2. Noordwijk, The Netherlands: European Space Agency. 130 p.

Fenton, N. 1993. How Effective Are Software Engineering Methods? Jour-
nal of Systems and Software, Vol. 22, No. 2, pp. 141 - 146.

Fenton, N., Pfleeger, S. L., and Glass, R. L. 1994. Science and Substance: A
Challenge to Software Engineers. |EEE Software, Vol. 11, No. 4, pp. 86 - 95.

Feyerabend, P. 1975. Against Method: Outline of an Anarchistic Theory of
Knowledge. London: New Line Books. 339 p.

Fromkin, V. and Rodman, R. 1988. An Introduction to Language. 4th ed.
New York: Holt, Rinehart and Winston, Inc. 460 p.

92

Fyson, J. 1995. An Investigation into Methods of Improving Program Com-
prehension through Better Documentation. Project Report. Durham, United
Kingdom: University of Durham, Department of Computer Science. 78 p.

Gellenbeck, E. M. and Cook, C. R. 1991. Does Signaling Help Professional
Programmers Read and Understand Computer Programs? Technical Report
91-60-3. Corvallis, Oregon: Oregon State University, Computer Science
Department. 20 p.

Glass, R. L. 1994. The Software-Research Crisis. |IEEE Software, Vol. 11,
No. 6, pp. 42 - 47.

Green, T. R. G. 1990. The Nature of Programming. In: Hoc, J. M., Green, T.
R. G, Samurcay, R., and Gilmore, D. J. (eds.) Psychology of Programming.
London: Academic Press. Pp. 21 - 44.

Grogono, P. 1989. Comments, Assertions, and Pragmas. ACM SIGPLAN
Notices, Vol. 24, No. 3, pp. 79 - 84.

Hakalahti, H., Lappaainen, P, and Tervonen, M. 1978. Minitietokoneet
[Minicomputers]. Oulu, Finland: Sahkoéinsintdrikilta ry., Oulun Y liopisto.
431 p. (In Finnish.)

Hall-Quest, A. L. 1979. Abbreviations. In: Collier's Encyclopedia. Volume
1. New York: Macmillan. Pp. 13 - 14.

Harel, D. 1992. Biting the Silver Bullet, Toward a Brighter Future for Sys-
tem Development. IEEE Compuiter, Vol. 25, No. 1, pp. 8 - 20.

Hoc, J. M., Green, T. R. G, Samurcay, R. and Gilmore, D. J. (eds.) 1990.
Psychology of Programming. London: Academic Press. 290 p.

Hodges, A. 1983. Alan Turing: The Enigma. New York: Simon and
Schuster. 571 p.

Horowitz, E. (ed.) 1987. Programming Languages. A Grand Tour. 3rd ed.
Rockville, Maryland: Computer Science Press. 583 p.

Ibrahim, A. M. 1989. Acronyms Observed. IEEE Transactions on Profes-
sional Communication, Vol. 32, No. 1, pp. 27 - 28.

ICSM. 1994. Proceedings of International Conference on Software Mainte-
nance. Los Alamitos, California: IEEE Computer Society Press. 449 p.

livari, J. 1991. A Paradigmatic Analysis of Contemporary Schools of IS
Development. European Journal of Information Systems, Vol. 1, No. 4, pp.
249 - 272.

93

Intel. 1979. MCS-80/85 Family User's Manual. Santa Clara, California:
Intel Corporation.

SO 9000-3. 1991. Quality Management and Quality Assurance Standards -
Part 3: Guidelines for the Application of 1SO 9001 to the Development, Sup-
ply and Maintenance of Software. Geneva, Switzerland: International Orga-
nization for Standardization. 15 p.

Jackson, M. 1994. Problems, Methods, and Specialization. Software Engi-
neering Journal, Vol. 9, No. 6, pp. 249 - 255. (A dlightly condensed version
of the paper isin: IEEE Software, Vol. 11, No. 6, 1994, pp. 57 - 62.)

Jarman, D. 1993. Wittgenstein (motion picture). London: Channel Four and
British Film Institute. 75 minutes.

Johnson, W. L. 1987. Some Comments on Coding Practice. ACM SIGSOFT
Software Engineering Notes, Vol. 12, No. 2, pp. 32 - 35.

Jokela, T. 1991. A Modeling Method for Early Validation of Embedded
Systems. Licentiate Thesis. Oulu, Finland: University of Oulu, Department
of Electrical Engineering. 80 p.

Jarvinen, P. and Jarvinen, A. 1993. Tutkimustytn metodeista [On Methods
in Research Work]. Tampere, Finland: University of Tampere, Department
of Information Processing Science. 121 p. (In Finnish with English
Abstract.)

Kaelbling, M. J. 1988. Programming Languages Should NOT Have Com-
ment Statements. ACM SIGPLAN Noatices, Vol. 23, No. 10, pp. 59 - 60.

Kauranen, I., Ropponen, P, and Aaltonen, M. 1993. Tutkimusraportin kir-
joittamisen opas [A Guide for Writing Research Reports]. Espoo, Finland:
Helsinki University of Technology. 113 p. (In Finnish.)

Keller, D. A. 1990. Guide to Natural Naming. ACM SIGPLAN Notices, Vol.
25, No. 5, pp. 95 - 102.

Kerola, P. and Freeman, P. 1981. A Comparison of Lifecycle Models. Pro-
ceedings of the 5th International Conference on Software Engineering. Los
Alamitos, California: IEEE Computer Society Press. Pp. 90 - 99.

Knuth, D. E. 1984. Literate Programming, The Computer Journal, Vol.27,
No. 2, 1984, pp. 97 - 111.

Kuhn, T. S. 1962. The Structure of Scientific Revolutions. International
Encyclopedia of Unified Science. Volume Il. Number 2. Chicago, Illinois:
The University of Chicago Press. 172 p.

94

Laitinen, K. 1992. Document Classification for Software Quality Systems.
ACM SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 32 - 39.

Laitinen, K. and Taramaa, J. 1994. A Theory to Support the Use of Natural
Naming in Software Documentation. Working papers series B33. Oulu,
Finland: University of Oulu, Department of Information Processing Science.
27 p. ISBN 951-42-3967-9.

Laitinen, K. 1995. Estimating Understandability of Software Documents.
Working Paper. Oulu, Finland: VTT Electronics. 12 p. To appear in ACM
SIGSOFT Software Engineering Notesin January or April 1996.

Ledgard, H., Whiteside, J. A., Singer, A., and Seymour, W. 1980. The Natu-
ral Language of Interactive Systems. Communications of the ACM, Vol. 23,
No. 10, pp. 556 - 563.

Ledgard, H. and Tauer, J. 1987. Professional Software. Volume Il. Program-
ming Practice. Reading, Massachusetts. Addison-Wesley. 220 p.

Logsdon, D. and Logsdon, T. 1986. The Curse of the Acronym. In: Proceed-
ings of the International Professional Communications Conference. Wash-
ington D. C: |IEEE. Pp. 145 - 152.

MacLennan, B. J. 1983. Principles of Programming Languages. Design,
Evauation, and Implementation. New York: Holt, Rinehart and Winston.
544 p.

Marca, D. 1981. Some Pascal Style Guidelines. ACM SIGPLAN Notices,
Vol. 16, No. 4, pp. 70 - 80.

Matsumoto, Y. 1987. A Software Factory: An Overall Approach to Software
Production. In: Freeman, P. (ed.) Software Reusablity. Los Alamitos, Cali-
fornia: IEEE Computer Society Press. Pp. 155 - 178.

Nelson, R. J. 1992. Naming and Reference. London: Routledge. 297 p.

Newsted, P. R. 1979. Flowchart-Free Approach to Documentation. Journal
of Systems Management, Vol. 30, No. 4, pp. 18 - 21.

Oman, P. W. and Cook, C. R. 1991. A Programming Style Taxonomy. The
Journal of Systems and Software, Vol. 15, No. 3, pp. 287 - 301.

Page-Jones, M. 1988. The Practical Guide to Structured Systems Design.
2nd ed. Englewood Cliffs, New Jersey: Prentice Hall. 249 p.

Parikh, G. and Zvegintzov, N. (eds.) 1983. Tutorial on Software Mainte-
nance. Los Angeles, Californiac IEEE Computer Society Press. 359 p.

95

Parnas, D. L. and Clements P. C. 1986. A Rational Design Process. How and
Why to Fake It. IEEE Transactions on Software Engineering, Vol. SE-12,
No. 2, pp. 251 - 257.

Plum, T. 1984. C Programming Guidelines. Englewood Cliffs, New Jersey:
Prentice Hall. 146 p.

Potts, C. 1993. Software-Engineering Research Revisited. IEEE Software,
Vol. 10, No. 5, pp. 19 - 28.

Prieto-Diaz, R. and Arango, G. 1991. Domain Analysis and Software System
Modeling. Los Alamitos, California: IEEE Computer Society Press. 312 p.

Raghavan, S. A. and Chand, D. R. 1989. Diffusing Software-Engineering
Methods. |EEE Software, Vol. 6, No. 4, pp. 81 - 90.

ReaGeniX. 1994. ReaGeniX: Real-Time Application Generator - User's
Manual. Oulu, Finland: VTT Electronics. 32 p.

Rowe, N. C. 1985. Naming in Programming. Computers in Schools, Vol. 2,
No. 2 - 3, pp. 241 - 253.

Rowe, N. C. and Guglielmo, E. J. 1993. Exploiting Captions in Retrieval of
Multimedia Data. Information Processing and Management, Vol. 29, No. 4,
pp. 453 - 461.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. 1991.
Object Oriented Modeling and Design. Englewood Cliffs, New Jersey: Pren-
tice Hall. 538 p.

Saeki, M., Horai, H., and Enomoto, H. 1989. Software Development Process
from Natural Language Specification. Proceedings of the 11th International
Conference on Software Engineering. Los Alamitos, California: IEEE Com-
puter Society Press. Pp. 64 - 73.

Sammet, J. E. 1966. The Use of English as a Programming Language. Com-
munications of the ACM, Vol. 9, No. 3, pp. 228 - 230.

Sammet, J. E. 1972. Programming Languages: History and Future. Commu-
nications of the ACM, Vol. 15, No. 7, pp. 601 - 610.

Sammet, J. E. 1981. The Early History of COBOL. In: Wexelblat, R. L. (ed.)
History of Programming Languages. London: Academic Press. Pp. 199 -
243.

Seppanen, V. 1990. Acquisition and Reuse of Knowledge to Design Embed-
ded Software. VTT Publications 66. Espoo, Finland: Technical Research
Centre of Finland (VTT). 216 p. + app. 10p.

96

Sheppard, S. B., Curtis, B., Milliman, P, and Love, T. 1979. Modern Coding
Practices and Programmer Performance. Computer, Vol. 12, No. 12, pp. 41 -
49,

Shneiderman, B. 1980. Software Psychology: Human Factors in Computer
and Information Systems. Cambridge, Massachusetts: Winthrop Publishers.
320 p.

Shneiderman. B. 1985. The Relationship between COBOL and Computer
Science. In: Horowitz, E. (ed.) Programming Languages. A Grand Tour. 3rd
ed. Rockville, Maryland: Computer Science Press. Pp. 417 - 421. Also in:
Annals of the History of Computing, Vol. 7, No. 4. Reston, Virginia: AFIPS.

Smeaton, A. F. 1992. Progress in the Application of Natural Language Pro-
cessing to Information Retrieval Tasks. The Computer Journal, Vol. 35, No.
3, pp. 268 - 278.

Smith, M. and Taffler, R. 1992. Readability and Understandability: Different
Measures of the Textua Complexity of Accounting Narrative. Accounting
& Accountability Journal, Vol. 5, No. 4, pp. 84 - 98.

Soloway, E. and Ehrlich, K. 1984. Empirical Studies of Programming
Knowledge. |EEE Transactions on Software Engineering, Vol. SE-10, No. 5,
pp. 595 - 609. Also in (Curtis 1985).

Soloway, E. 1986. Learning to Program = Learning to Construct Mecha
nisms and Explanations. Communications of the ACM, Vol. 29, No. 9, pp.
850 - 858.

Sowa, J. F. 1990. Finding Structure in Knowledge Soup. In: Part 1l of Pro-
ceedings of InfoJapan'90 International Conference. Tokyo: Information Pro-
cessing Society of Japan. Pp. 245 - 253.

Suitidla, R. 1993. Work-Oriented Development of Interactive Software
Tools. Understanding the Work of Software Maintainers and Making an
Interactive Tool for Them. VTT Publications 139. Espoo, Finland: Technical
Research Centre of Finland (VTT). 176 p. + app. 10 p.

Swartout, W. and Balzer, R. 1982. On the Inevitable Intertwining of Specifi-
cation and Implementation. Communications of the ACM, Vol. 25, No. 7,
pp. 438 - 440.

Taramaa, J. and Oivo, M. 1993. Evaluation of Software Maintenance of
Embedded Computer Systems. Proceedings of International Symposium on
Engineered Software Systems. Singapore: World Scientific Publishing Co.
Pp. 193 - 203.

Tarasti, E. 1990. Johdatusta semiotiikkaan [An Introduction to Semiotics|.
97

Helsinki, Finland: Gaudeamus. 317 p. (In Finnish.)

Tausworthe, R. C. 1992. Information Models of Software Productivity: Lim-
its on Productivity Growth. Journal of Systems and Software, Vol. 19, No. 2,
pp. 185 - 201.

Teasley, B. E. 1994. The Effects of Naming Style and Expertise on Program
Comprehension. International Journal of Human-Computer Studies, Vol. 40,
No. 5, pp. 757 - 770.

Tichy, W. F., Habermann, N., and Prechelt, L. 1993. ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 18, No. 1, pp. 35 - 48.

Turing, A. M. 1937a. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Ser. 2, Vol. 42, pp. 230 - 265. Reprinted in: Davis M. (ed.) 1965. The Unde-
cidable: Basic Papers on Undecidable Propositions, Unsolvable Problems
and Computable Functions. Hewlett, New York: Raven Press. Pp. 116 - 151.

Turing, A. M. 1937b. On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction. Proceedings of the London Mathe-
matical Society, Ser. 2, Vol. 43, pp. 544 - 546. Reprinted in: Davis M. (ed.)
1965. The Undecidable: Basic Papers on Undecidable Propositions, Unsolv-
able Problems and Computable Functions. Hewlett, New York: Raven Press.
Pp. 152 - 154.

Ward, P. T. and Méllor, S. J. 1985. Structured Development for Real-Time
Systems, Vol. 1-3. New York: Yourdon Press. 509 p.

Webster's. 1989. Webster's Dictionary of the English Language. New York:
Lexicon Publications. 1149 p.

Weinberg, G. M. 1971. The Psychology of Computer Programming. New
York: Van Nostrand Reinhold Company. 288 p.

Weissman, L. M. 1974. A Methodology for Studying the Psychological
Complexity of Computer Programs. Ph.D. Thesis. Toronto: University of
Toronto, Department of Computer Science. 231 p.

Welsh, J. and Han, J. 1994. Software Documents. Concepts and Tools. Soft-
ware -- Concepts and Tools, Vol. 15, No. 1, pp. 12 - 25.

Wittgenstein, L. 1921. Tractatus Logico Philosophicus. London: Routledge.
207 p.

Wittgenstein, L. 1953. Philosophical investigations. Oxford, United King-
dom: Basil Blackwell. 250 p.

98

WPC. 1993. Proceedings of the Second Workshop on Program Comprehen-
sion. Los Alamitos, California: IEEE Computer Society Press. 193 p.

Yngve, V. H. 1986. Linguistics as a Science. Indianapolis: Indiana Univer-
sity Press. 120 p.

Yonezaki, N. 1989. Natural Language Interface for Requirements Specifica-
tion. In: Matsumoto, Y. and Ohno, Y. (eds.) Japanese Perspectives in Soft-
ware Engineering. Singapore: Addison-Wesley. Pp. 41 - 76.

Yourdon, E. 1989. Modern Structured Analysis. Englewood Cliffs, New Jer-
sey: Prentice-Hall. 717 p.

Zemanek, H. 1974. Formalization: Past, Present, and Future. In: Shaw, B.
(ed.) Formal Aspects of Computing Science: Proceedings of Joint IBM Uni-
versity of Newcastle upon Tyne Seminar. Pp. 177 - 197. Also in: Lecture
Notes in Computer Science 23: Programming Methodology. Berlin:
Springer-Verlag, 1975.

99

